G. Italiano, Adam Karczmarz, Jakub Lacki, P. Sankowski
{"title":"Decremental single-source reachability in planar digraphs","authors":"G. Italiano, Adam Karczmarz, Jakub Lacki, P. Sankowski","doi":"10.1145/3055399.3055480","DOIUrl":null,"url":null,"abstract":"In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2 n loglogn), which improves upon a previously known O(√n) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2 n loglogn), which improves upon a previously known O(√n) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs.
本文给出了一种求解有向平面图中递减单源可达性问题的新算法。它在O(nlog2nloglogn)总时间内处理任何边删除序列,并显式维护从固定源顶点可到达的顶点集。因此,如果所有边最终都被删除,处理每条边删除的平摊时间仅为O(log2 n loglog),这比之前已知的O(√n)解决方案有所改进。我们还展示了一种具有相同总更新时间的有向平面图强连接分量的递减维护算法。这些结果构成了这两个问题的第一个几乎最优的算法(直到多对数因子)。据我们所知,这些是第一个在一般有向平面图上具有多对数更新时间的动态算法,用于非平凡可达型问题,在一般图中只有多项式界是已知的。