Yan Wang, Korinn S. Ostrow, Seth A. Adjei, N. Heffernan
{"title":"The Opportunity Count Model: A Flexible Approach to Modeling Student Performance","authors":"Yan Wang, Korinn S. Ostrow, Seth A. Adjei, N. Heffernan","doi":"10.1145/2876034.2893382","DOIUrl":null,"url":null,"abstract":"Detailed performance data can be exploited to achieve stronger student models when predicting next problem correctness (NPC) within intelligent tutoring systems. However, the availability and importance of these details may differ significantly when considering opportunity count (OC), or the compounded sequence of problems a student experiences within a skill. Inspired by this intuition, the present study introduces the Opportunity Count Model (OCM), a unique approach to student modeling in which separate models are built for differing OCs rather than creating a blanket model that encompasses all OCs. We use Random Forest (RF), which can be used to indicate feature importance, to construct the OCM by considering detailed performance data within tutor log files. Results suggest that OC is significant when modeling student performance and that detailed performance data varies across OCs.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Detailed performance data can be exploited to achieve stronger student models when predicting next problem correctness (NPC) within intelligent tutoring systems. However, the availability and importance of these details may differ significantly when considering opportunity count (OC), or the compounded sequence of problems a student experiences within a skill. Inspired by this intuition, the present study introduces the Opportunity Count Model (OCM), a unique approach to student modeling in which separate models are built for differing OCs rather than creating a blanket model that encompasses all OCs. We use Random Forest (RF), which can be used to indicate feature importance, to construct the OCM by considering detailed performance data within tutor log files. Results suggest that OC is significant when modeling student performance and that detailed performance data varies across OCs.