{"title":"Ferroelectricity and ferromagnetism in a \nVOI2\n monolayer: Role of the Dzyaloshinskii-Moriya interaction","authors":"N. Ding, Jun Chen, S. Dong, A. Stroppa","doi":"10.1103/PhysRevB.102.165129","DOIUrl":null,"url":null,"abstract":"Multiferroics with intrinsic ferromagnetism and ferroelectricity are highly desired but rather rare, while most ferroelectric magnets are antiferromagnetic. A recent theoretical work [Phys. Rev. B {\\bf 99}, 195434 (2019)] predicted that oxyhalides VO$X_2$ ($X$: halogen) monolayers are two-dimensional multiferroics by violating the empirical $d^0$ rule. Most interestingly, the member VOI$_2$ are predicted to exhibit spontaneous ferromagnetism and ferroelectricity. In this work, we extend the previous study on the structure and magnetism of VOI$_2$ monolayer by using density functional theory and Monte Carlo simulation. The presence of the heavy element iodine with a strong spin-orbit coupling leads an effective Dzyaloshinskii-Moriya interaction in the polar structure, which favors a short-period spiral a magnetic structure.. Another interesting result is that the on-site Coulomb interaction can strongly suppress the polar distortion thus leading to a ferromagnetic metallic state. Therefore, the VOI2 monolayer is either a ferroelectric insulator with spiral magnetism or a ferromagnetic metal, instead of a ferromagnetic ferroelectric system. Our study highlights the key physical role of the Dzyaloshinskii-Moriya interaction.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.102.165129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Multiferroics with intrinsic ferromagnetism and ferroelectricity are highly desired but rather rare, while most ferroelectric magnets are antiferromagnetic. A recent theoretical work [Phys. Rev. B {\bf 99}, 195434 (2019)] predicted that oxyhalides VO$X_2$ ($X$: halogen) monolayers are two-dimensional multiferroics by violating the empirical $d^0$ rule. Most interestingly, the member VOI$_2$ are predicted to exhibit spontaneous ferromagnetism and ferroelectricity. In this work, we extend the previous study on the structure and magnetism of VOI$_2$ monolayer by using density functional theory and Monte Carlo simulation. The presence of the heavy element iodine with a strong spin-orbit coupling leads an effective Dzyaloshinskii-Moriya interaction in the polar structure, which favors a short-period spiral a magnetic structure.. Another interesting result is that the on-site Coulomb interaction can strongly suppress the polar distortion thus leading to a ferromagnetic metallic state. Therefore, the VOI2 monolayer is either a ferroelectric insulator with spiral magnetism or a ferromagnetic metal, instead of a ferromagnetic ferroelectric system. Our study highlights the key physical role of the Dzyaloshinskii-Moriya interaction.