Olga S. Tarasova, A. I. Dontsov, B. V. Sladkopevtsev, I. Y. Mittova
{"title":"Влияние обработки в парах серы на скорость термооксидирования InP, состав, морфологию поверхности и свойства плёнок","authors":"Olga S. Tarasova, A. I. Dontsov, B. V. Sladkopevtsev, I. Y. Mittova","doi":"10.17308/KCMF.2019.21/767","DOIUrl":null,"url":null,"abstract":"Предложена методика модифицирования InP в парах серы, методом локального рентгеноспектрального микроанализа подтверждено её наличие на поверхности. Дляплёнок нанометрового диапазона толщины (до 50 нм), выращенных термическим оксидированием InP с предварительно обработанной в парах серы поверхностью, методом Оже-электронной спектроскопии установлено послойное распределение компонентов. По данным атомно-силовой микроскопии модифицирование InP серой приводит к формированию поверхности с зернистой структурой, более упорядоченной по сравнению с эталоном (собственное термооксидирование фосфида индия). Несмотря на то, что в результирующих плёнках сера не обнаружена, они обладают полупроводниковыми свойствами, тогда как для собственных оксидных слоёв на InP характерна омическая проводимость \n \n \nREFERENCES \n \nMarkov V. F., Mukhamedzyanov Kh. N., Maskaeva L. N. Materialy sovremennoj jelektroniki [Materials of modern electronics]. Ekaterinburg, Publishing Ural. un-one, 2014, 272 p. (in Russ.) \nOktyabrsky S. Fundamentals of III-V Semiconductor MOSFETs. Springer Science LCC, 2013, 447 p. \nBessolov V. N., Lebedev M. V. Hal’kogenidnaja passivacija poluprovodnikov AIIIBV [Chalcogenide passivation of III–V semiconductor surfaces]. Semiconductors, 1998, v. 32(11), pp. 1141–1156. https://doi.org/10.1134/1.1187580 \nMittova I. Ya., Soshnikov M., Terekhov V. A., Semenov V. N. Termicheskoe oksidirovanie geterostruktur V2S5/InP v kislorode [Thermal oxidation of V2S5/InP heterostructures in oxygen]. Inorganic Materials, 2000, v. 36(10), pp. 975–978. https://doi.org/10.1007/BF02757971 \nYoshida N., Chichibu S., Akane T., Totsuka M., Uji H., Matsumoto S., Higuchi H. Surface passivation of GaAs using ArF excimer laser in a H2S gas ambient. Applied Physics Letters, 1993, v. 63(22), pp. 3035–3037. https://doi.org/10.1063/1.110250 \nLiu K. Z., Shimomura M., Fukuda Y. Band Bending of n-GaP(001) and p-InP(001) Surfaces with and without sulfur treatment studied by Photoemission (PES) and Inverse Photoemission Spectroscopy (IPES). Advanced Materials Research, 2011, v. 222, pp. 56–61. https://doi.org/10.4028/www.scientific.net/AMR.222.56 \nTian Sh., Wei Zh., Li Y., Zhao H., Fang X. Surface state and optical property of sulfur passivated InP. Materials Science in Semiconductor Processing, 2014, v. 17, pp. 33–37. https://doi.org/10.1016/j.mssp.2013.08.008 \nSundararaman C. S., Poulin S., Currie J. F., Leonelli R. The sulfur-passivated InP surface. Canadian Journal of Physics, 2011, v. 69(3–4), pp. 329–332. https://doi.org/10.1139/p91-055 \nLau W. M., Kwok R. W. M., Ingrey S. Controlling surface band-bending of InP with polysulfi de treatments. Surface Science, 1992, v. 271(3), pp. 579–586. https://doi.org/10.1016/0039-6028(92)90919-W \nTao Y., Yelon A., Sacher E., Lu Z. H., Graham M. J. S-passivated InP (100)-(1×1) surface prepared by a wet chemical process. Applied Physics Letters, 1992, v. 60(21), pp. 2669–2671. https://doi.org/10.1063/1.106890 \nChasse T., Peisert H., Streubel P., Szargan R. Sulfurization of InP(001) surfaces studied by X-ray photoelectron and X-ray induced Auger electron spectroscopies (XPS/XAES). Surface Science, 1995, v. 331–333, pp. 434–440. https://doi.org/10.1016/0039-6028(95)00306-1 \nMaeyama S., Sugiyama M., Heun S., Oshima M. Electron J. (NH4)2Sx-treated InP(100) surfaces studied by soft x-ray photoelectron spectroscopy. Journal of Electronic Materials, 1996, v. 25(5), pp. 593–596. https://doi.org/10.1007/BF02666509 \nSugahara H., Oshima M., Klauser R. Bonding states of chemisorbed sulfur atoms on GaAs. Surface Science, 1991, v. 242(1–3), pp. 335–340. https://doi.org/10.1016/0039-6028(91)90289-5 \nKoebbel A., Leslie A., Dudzik E., Mitchell C. E. J. X-ray standing wave study of wet-etch sulphur-treated InP 100 surfaces. Applied Surface Science, 2000, v. 166(1–4), pp. 196–200. https://doi.org/10.1016/S0169-4332(00)00413-X \nNelson A. J., Frigo S. P., Rosenberg R. Soft x-ray photoemission characterization of the H2S exposed surface of p-InP. Journal of Applied Physics, 1992, v. 71(12), pp. 6086–6089. https://doi.org/10.1063/1.350415 \nNelson A. J., Frigo S. P., Rosenberg R. Surface type conversion of InP by H2S plasma exposure: A photoemission investigation. Journal of Vacuum Science & Technology A, 1993, v. 11(4), pp. 1022–1027. https://doi.org/10.1116/1.578807 \nKwok R. W. M., Lau W. M. X-ray photoelectron spectroscopy study on InP treated by sulfur containing compounds. Journal of Vacuum Science & Technology A, 1992, v. 10(4), pp. 2515–2520. https://doi.org/10.1116/1.578091 \nWang X., Weinberg W. H. Structural model of sulfur on GaAs(100). Journal of Applied Physics, 1994, v. 75(5), pp. 2715–2717. https://doi.org/10.1063/1.356203 \nBerkovits V. L., Paget D. Optical study of surface dimers on sulfur-passivated (001)GaAs. Applied Physics Letters, 1992, v. 61(15), pp. 1835–1837. https://doi.org/10.1063/1.108390 \nBessolov V. N., Konenkova E. V., Lebedev M. V. Sulfi dization of GaAs in alcoholic solutions: a method having an impact on effi ciency and stability of passivation. Materials Science and Engineering: B, 1997, v. 44(1–3), pp. 376–379. https://doi.org/10.1016/S0921-5107(96)01816-8 \nSladkopevtsev B. V., Mittova I. Ya., Tomina E. V., Burtseva N. A. Growth of vanadium oxide fi lms on InP under mild conditions and thermal oxidation of the resultant structures. Inorganic Materials, 2012, v. 48(2), pp. 161–168. https://doi.org/10.1134/S0020168512020173 \nTretyakov N. N., Mittova I. Ya., Sladkopevtcev B. V., Samsonov A. A. Vlijanie magnetronno napylennogo sloja MnO2 na kinetiku termooksidirovanija InP, sostav i morfologiju sintezirovannyh plenok [The effect of the magnetron-deposited MnO2 layer on the InP thermal oxidation kinetics, composition and morphology of the synthesized fi lms]. Inorganic Materials, 2017, v. 53(1), pp. 41–48. https://doi.org/10.7868/S0002337X17010171 (in Russ.) \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/KCMF.2019.21/767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Предложена методика модифицирования InP в парах серы, методом локального рентгеноспектрального микроанализа подтверждено её наличие на поверхности. Дляплёнок нанометрового диапазона толщины (до 50 нм), выращенных термическим оксидированием InP с предварительно обработанной в парах серы поверхностью, методом Оже-электронной спектроскопии установлено послойное распределение компонентов. По данным атомно-силовой микроскопии модифицирование InP серой приводит к формированию поверхности с зернистой структурой, более упорядоченной по сравнению с эталоном (собственное термооксидирование фосфида индия). Несмотря на то, что в результирующих плёнках сера не обнаружена, они обладают полупроводниковыми свойствами, тогда как для собственных оксидных слоёв на InP характерна омическая проводимость
REFERENCES
Markov V. F., Mukhamedzyanov Kh. N., Maskaeva L. N. Materialy sovremennoj jelektroniki [Materials of modern electronics]. Ekaterinburg, Publishing Ural. un-one, 2014, 272 p. (in Russ.)
Oktyabrsky S. Fundamentals of III-V Semiconductor MOSFETs. Springer Science LCC, 2013, 447 p.
Bessolov V. N., Lebedev M. V. Hal’kogenidnaja passivacija poluprovodnikov AIIIBV [Chalcogenide passivation of III–V semiconductor surfaces]. Semiconductors, 1998, v. 32(11), pp. 1141–1156. https://doi.org/10.1134/1.1187580
Mittova I. Ya., Soshnikov M., Terekhov V. A., Semenov V. N. Termicheskoe oksidirovanie geterostruktur V2S5/InP v kislorode [Thermal oxidation of V2S5/InP heterostructures in oxygen]. Inorganic Materials, 2000, v. 36(10), pp. 975–978. https://doi.org/10.1007/BF02757971
Yoshida N., Chichibu S., Akane T., Totsuka M., Uji H., Matsumoto S., Higuchi H. Surface passivation of GaAs using ArF excimer laser in a H2S gas ambient. Applied Physics Letters, 1993, v. 63(22), pp. 3035–3037. https://doi.org/10.1063/1.110250
Liu K. Z., Shimomura M., Fukuda Y. Band Bending of n-GaP(001) and p-InP(001) Surfaces with and without sulfur treatment studied by Photoemission (PES) and Inverse Photoemission Spectroscopy (IPES). Advanced Materials Research, 2011, v. 222, pp. 56–61. https://doi.org/10.4028/www.scientific.net/AMR.222.56
Tian Sh., Wei Zh., Li Y., Zhao H., Fang X. Surface state and optical property of sulfur passivated InP. Materials Science in Semiconductor Processing, 2014, v. 17, pp. 33–37. https://doi.org/10.1016/j.mssp.2013.08.008
Sundararaman C. S., Poulin S., Currie J. F., Leonelli R. The sulfur-passivated InP surface. Canadian Journal of Physics, 2011, v. 69(3–4), pp. 329–332. https://doi.org/10.1139/p91-055
Lau W. M., Kwok R. W. M., Ingrey S. Controlling surface band-bending of InP with polysulfi de treatments. Surface Science, 1992, v. 271(3), pp. 579–586. https://doi.org/10.1016/0039-6028(92)90919-W
Tao Y., Yelon A., Sacher E., Lu Z. H., Graham M. J. S-passivated InP (100)-(1×1) surface prepared by a wet chemical process. Applied Physics Letters, 1992, v. 60(21), pp. 2669–2671. https://doi.org/10.1063/1.106890
Chasse T., Peisert H., Streubel P., Szargan R. Sulfurization of InP(001) surfaces studied by X-ray photoelectron and X-ray induced Auger electron spectroscopies (XPS/XAES). Surface Science, 1995, v. 331–333, pp. 434–440. https://doi.org/10.1016/0039-6028(95)00306-1
Maeyama S., Sugiyama M., Heun S., Oshima M. Electron J. (NH4)2Sx-treated InP(100) surfaces studied by soft x-ray photoelectron spectroscopy. Journal of Electronic Materials, 1996, v. 25(5), pp. 593–596. https://doi.org/10.1007/BF02666509
Sugahara H., Oshima M., Klauser R. Bonding states of chemisorbed sulfur atoms on GaAs. Surface Science, 1991, v. 242(1–3), pp. 335–340. https://doi.org/10.1016/0039-6028(91)90289-5
Koebbel A., Leslie A., Dudzik E., Mitchell C. E. J. X-ray standing wave study of wet-etch sulphur-treated InP 100 surfaces. Applied Surface Science, 2000, v. 166(1–4), pp. 196–200. https://doi.org/10.1016/S0169-4332(00)00413-X
Nelson A. J., Frigo S. P., Rosenberg R. Soft x-ray photoemission characterization of the H2S exposed surface of p-InP. Journal of Applied Physics, 1992, v. 71(12), pp. 6086–6089. https://doi.org/10.1063/1.350415
Nelson A. J., Frigo S. P., Rosenberg R. Surface type conversion of InP by H2S plasma exposure: A photoemission investigation. Journal of Vacuum Science & Technology A, 1993, v. 11(4), pp. 1022–1027. https://doi.org/10.1116/1.578807
Kwok R. W. M., Lau W. M. X-ray photoelectron spectroscopy study on InP treated by sulfur containing compounds. Journal of Vacuum Science & Technology A, 1992, v. 10(4), pp. 2515–2520. https://doi.org/10.1116/1.578091
Wang X., Weinberg W. H. Structural model of sulfur on GaAs(100). Journal of Applied Physics, 1994, v. 75(5), pp. 2715–2717. https://doi.org/10.1063/1.356203
Berkovits V. L., Paget D. Optical study of surface dimers on sulfur-passivated (001)GaAs. Applied Physics Letters, 1992, v. 61(15), pp. 1835–1837. https://doi.org/10.1063/1.108390
Bessolov V. N., Konenkova E. V., Lebedev M. V. Sulfi dization of GaAs in alcoholic solutions: a method having an impact on effi ciency and stability of passivation. Materials Science and Engineering: B, 1997, v. 44(1–3), pp. 376–379. https://doi.org/10.1016/S0921-5107(96)01816-8
Sladkopevtsev B. V., Mittova I. Ya., Tomina E. V., Burtseva N. A. Growth of vanadium oxide fi lms on InP under mild conditions and thermal oxidation of the resultant structures. Inorganic Materials, 2012, v. 48(2), pp. 161–168. https://doi.org/10.1134/S0020168512020173
Tretyakov N. N., Mittova I. Ya., Sladkopevtcev B. V., Samsonov A. A. Vlijanie magnetronno napylennogo sloja MnO2 na kinetiku termooksidirovanija InP, sostav i morfologiju sintezirovannyh plenok [The effect of the magnetron-deposited MnO2 layer on the InP thermal oxidation kinetics, composition and morphology of the synthesized fi lms]. Inorganic Materials, 2017, v. 53(1), pp. 41–48. https://doi.org/10.7868/S0002337X17010171 (in Russ.)
提供了一种方法来修改InP对硫的修改,通过局部x射线光谱微分析证实了它的存在。纳米纳米厚度范围(多达50纳米纳米),由InP热氧化物表面处理,通过电子光谱学确定了成分的分布。根据核力显微镜和对InP硫的修改,其表面形成的颗粒结构比标准更有序(印度自身的热氧化)。虽然没有在合成胶片中发现硫,但它们具有半导体特性,而InP上的氧化物层具有Mukhamedzyanov Kh的omith电导率。N., Maskaeva L. N., Maskaeva j . jelekroniki。Ekaterinburg,公共Ural。2014年,un-one, 272 p。Oktyabrsky S. fundamtals III-V Semiconductor MOSFETs。施普林格科学有限公司,2013年,447 p, Bessolov vn,Semiconductors, 1998, v32 (11), pp, 1141 - 1156。https://doi.org/10.1134/1.1187580 Mittova一世Ya。Soshnikov M, Terekhov v, A, Semenov V2S5/InP kislorode (V2S5/InP v)。组织物质,2000年,v36 (10), pp, 975 - 978。正如N所料,吉田制作https://doi.org/10.1007/BF02757971 Chichibu S。,Uji Akane T、Totsuka M。H, Matsumoto S。Higuchi H . Surface ArF立体passivation of砷化镓excimer laser in a H2S gas环境。应用物理Letters, 1993年,v63 (22), pp, 3035 - 3037。https://doi.org/10.1063/1.110250 (k Z、Shimomura M。Fukuda y Band Bending of n - GaP (001) p - InP (001) Surfaces and with and without硫磺treatment studied by Photoemission (PES) and反向Photoemission Spectroscopy (IPES)。高级物质研究,2011年,v222, pp, 56 - 61。本田(Zh https://doi.org/10.4028/www.scientific.net/AMR.222.56天Sh。李·Y, Zhao H,方赫,sulfur passivated公司的Surface状态和optical专业知识。物质科学,2014年,v17, 33 - 37。https://doi.org/10.1016/j.mssp.2013.08.008 Sundararaman c . S . Poulin S。柯里,j . F。Leonelli r . The硫磺- passivated InP surface。加拿大物理杂志,2011年,v69 (3 - 4), pp, 329 - 332。M, w https://doi.org/10.1139/p91-055订Kwok r . w . M, Ingrey s . Controlling surface band - bending of InP with polysulfi de treatments。Surface科学,1992年,v271 (3), pp, 579 - 586。https://doi.org/10.1016/0039-6028 (92) 90919 - W Tao Y。,Yelon A、Sacher E。Lu z H。格雷厄姆m . j . S - passivated InP(100) -(1×1)surface prepared by A wet chemical process。应用物理Letters, 1992年,v60 (21), pp, 2669 - 2671。https://doi.org/10.1063/1.106890 Chasse T。H。Peisert Streubel P, r Szargan Sulfurization of surfaces InP (001) X -射线photoelectron and studied by X - ray induced Auger spectroscopies电子(选项/ XAES)。Surface科学,1995年,v331 - 333, pp, 434 - 440。https://doi.org/10.1016/0039-6028 (95) 00306 - 1 Maeyama S, M。Heun S Sugiyama。Oshima M . j . (NH4) 2Sx相应电子InP (100) surfaces studied by soft x - ray photoelectron spectroscopy。1996年,v25 (5), pp, 593 - 596。https://doi.org/10.1007/BF02666509 Sugahara H r, Oshima M。Klauser Bonding states of chemisorbed硫磺原子on砷化镓。Surface科学,1991年,v242 (1 - 3), pp, 335 - 340。https://doi.org/10.1016/0039-6028 (91) 90289 Koebbel。莱斯利,A - 5。Dudzik E、Mitchell c . E . j . X - ray standing wave研究of wet etch - sulphur相应InP surfaces 100。应用Surface科学,2000,v166 (1 - 4), pp, 196 - 200。https://doi.org/10.1016/S0169-4332 (00) 00413 - X纳尔逊·a·J。r, Frigo s . P .罗森Soft X - ray photoemission characterization of the H2S)的P - InP surface of。1992年,v71 (12), pp, 6086 - 6089。https://doi.org/10.1063/1.350415纳尔逊·A·J, Frigo s . P . r . Surface的罗森type转换of suede InP by H2S plasma exposure: A photoemission investigation。Vacuum科学与技术杂志A, 1993年,v11 (4), pp, 1022 - 1027。https://doi.org/10.1116/1.578807 Kwok r . w . M,刘德华w . M . X - ray photoelectron spectroscopy研究on InP相应by硫磺containing compounds。1992年,v10 (4), pp, 2515 - 2520。Wang X w, Weinberg https://doi.org/10.1116/1.578091 h .结构性model of硫磺on砷化镓(100)。应用物理杂志,1994年,v75 (5), pp, 2715 - 2717。https://doi.org/10.1063/1.356203 Berkovits v . L。》d .光学研究of surface dimers on硫磺passivated(001)砷化镓。应用物理Letters, 1992年,v61 (15), pp, 1835 - 1837。https://doi.org/10.1063/1.108390 Bessolov V N。Konenkova e . Lebedev m . V . V。 砷化镓在酒精溶液中的磺化:一种影响钝化效率和稳定性的方法。材料科学与工程,1997,vol . 44(1), pp. 376-379。https://doi.org/10.1016/S0921-5107(96)01816-8 Sladkopevtsev b.v., Mittova I. Ya。[2],李建军,李建军,等。氧化钒薄膜在InP表面的生长及其结构的热氧化。无机材料,2012,vol . 48(2), pp. 161-168。https://doi.org/10.1134/S0020168512020173 Tretyakov N. N., Mittova I. Ya。[j]. Sladkopevtcev b.v, Samsonov A. A. Vlijanie磁控管沉积MnO2层对InP热氧化动力学、合成膜的组成和形貌的影响[j]。无机材料,2017,v. 53(1), pp. 41-48。https://doi.org/10.7868/S0002337X17010171(俄文)