{"title":"Decentralized Gradient-Quantization Based Matrix Factorization for Fast Privacy-Preserving Point-of-Interest Recommendation","authors":"Xuebin Zhou, Zhibin Hu, Jin Huang, Jing Chen","doi":"10.1613/jair.1.14414","DOIUrl":null,"url":null,"abstract":"With the rapidly growing of location-based social networks, point-of-interest (POI) recommendation has been attracting tremendous attentions. Previous works for POI recommendation usually use matrix factorization (MF)-based methods, which achieve promising performance. However, existing MF-based methods suffer from two critical limitations: (1) Privacy issues: all users’ sensitive data are collected to the centralized server which may leak on either the server side or during transmission. (2) Poor resource utilization and training efficiency: training on centralized server with potentially huge low-rank matrices is computational inefficient. In this paper, we propose a novel decentralized gradient-quantization based matrix factorization (DGMF) framework to address the above limitations in POI recommendation. Compared with the centralized MF methods which store all sensitive data and low-rank matrices during model training, DGMF treats each user’s device (e.g., phone) as an independent learner and keeps the sensitive data on each user’s end. Furthermore, a privacy-preserving and communication-efficient mechanism with gradient-quantization technique is presented to train the proposed model, which aims to handle the privacy problem and reduces the communication cost in the decentralized setting. Theoretical guarantees of the proposed algorithm and experimental studies on real-world datasets demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"101 1","pages":"1019-1041"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14414","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapidly growing of location-based social networks, point-of-interest (POI) recommendation has been attracting tremendous attentions. Previous works for POI recommendation usually use matrix factorization (MF)-based methods, which achieve promising performance. However, existing MF-based methods suffer from two critical limitations: (1) Privacy issues: all users’ sensitive data are collected to the centralized server which may leak on either the server side or during transmission. (2) Poor resource utilization and training efficiency: training on centralized server with potentially huge low-rank matrices is computational inefficient. In this paper, we propose a novel decentralized gradient-quantization based matrix factorization (DGMF) framework to address the above limitations in POI recommendation. Compared with the centralized MF methods which store all sensitive data and low-rank matrices during model training, DGMF treats each user’s device (e.g., phone) as an independent learner and keeps the sensitive data on each user’s end. Furthermore, a privacy-preserving and communication-efficient mechanism with gradient-quantization technique is presented to train the proposed model, which aims to handle the privacy problem and reduces the communication cost in the decentralized setting. Theoretical guarantees of the proposed algorithm and experimental studies on real-world datasets demonstrate the effectiveness of the proposed algorithm.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.