{"title":"The plants' 1-deoxy-D-xylulose-5-phosphate pathway for biosynthesis of isoprenoids","authors":"H. Lichtenthaler","doi":"10.1002/(SICI)1521-4133(19985)100:4/5<128::AID-LIPI128>3.0.CO;2-D","DOIUrl":null,"url":null,"abstract":"Isoprenoid biosynthesis in plants proceeds via two independent pathways: 1) the cytosolic classical acetate/mevalonate pathway (biosynthesis of sterols, sesquiterpenes, triterpenoids) and 2) via the non-mevalonate 1-deoxy-D-xylulose-5-phosphate (DOX-P) pathway for the biosynthesis of plastidic isoprenoids such as carotenoids, phytol (side-chain of chlorophylls), plastoquinone-9, isoprene, mono- and diterpenes. Both pathways form isopentenyl-diphosphate (IPP) as precursors, from which all other isoprenoids are formed via head-to-tail addition. The present knowledge of the novel 1-deoxy-D-xylulose-5-phosphate (DOX-P) pathways for isopentenyl-diphosphate biosynthesis, which is apparently located in plastids, is reviewed in this contribution. It provides a new insight into chloroplast metabolism.","PeriodicalId":12304,"journal":{"name":"Fett-lipid","volume":"89 1","pages":"128-138"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fett-lipid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1521-4133(19985)100:4/5<128::AID-LIPI128>3.0.CO;2-D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Isoprenoid biosynthesis in plants proceeds via two independent pathways: 1) the cytosolic classical acetate/mevalonate pathway (biosynthesis of sterols, sesquiterpenes, triterpenoids) and 2) via the non-mevalonate 1-deoxy-D-xylulose-5-phosphate (DOX-P) pathway for the biosynthesis of plastidic isoprenoids such as carotenoids, phytol (side-chain of chlorophylls), plastoquinone-9, isoprene, mono- and diterpenes. Both pathways form isopentenyl-diphosphate (IPP) as precursors, from which all other isoprenoids are formed via head-to-tail addition. The present knowledge of the novel 1-deoxy-D-xylulose-5-phosphate (DOX-P) pathways for isopentenyl-diphosphate biosynthesis, which is apparently located in plastids, is reviewed in this contribution. It provides a new insight into chloroplast metabolism.