Autonomous Object Detection in Satellite Images Using Wfrcnn

N. Aburaed, M. Al-Saad, Marwa Chendeb El Rai, S. Al Mansoori, H. Al-Ahmad, S. Marshall
{"title":"Autonomous Object Detection in Satellite Images Using Wfrcnn","authors":"N. Aburaed, M. Al-Saad, Marwa Chendeb El Rai, S. Al Mansoori, H. Al-Ahmad, S. Marshall","doi":"10.1109/InGARSS48198.2020.9358948","DOIUrl":null,"url":null,"abstract":"Object detection in remote sensing images has been a topic of interest that has gradually gained attention over the years due to the wide variety of related applications. Even though there is an extensive number of methods developed for object detection, there are still several challenges that remain unsolved, such as visual appearance variations, occlusions, and background clutter. Satellite images reveal a texture problem; it is difficult to differentiate between the background and the object of interest. In order to overcome this problem and exploit more of the spectral features of images, Discrete Wavelet Transform (DWT) is embedded into one of the most superior methods for object detection, which is Faster Region-based Convolutional Network (FRCNN). The accuracy of FRCNN is boosted by introducing the wavelet decomposition. The performance of the proposed strategy is tested, evaluated, and compared to the original FRCNN using two different datasets.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"31 1","pages":"106-109"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Object detection in remote sensing images has been a topic of interest that has gradually gained attention over the years due to the wide variety of related applications. Even though there is an extensive number of methods developed for object detection, there are still several challenges that remain unsolved, such as visual appearance variations, occlusions, and background clutter. Satellite images reveal a texture problem; it is difficult to differentiate between the background and the object of interest. In order to overcome this problem and exploit more of the spectral features of images, Discrete Wavelet Transform (DWT) is embedded into one of the most superior methods for object detection, which is Faster Region-based Convolutional Network (FRCNN). The accuracy of FRCNN is boosted by introducing the wavelet decomposition. The performance of the proposed strategy is tested, evaluated, and compared to the original FRCNN using two different datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Wfrcnn的卫星图像自主目标检测
遥感图像中的目标检测由于其广泛的应用,近年来逐渐受到人们的关注。尽管已经开发了大量用于目标检测的方法,但仍然存在一些尚未解决的挑战,例如视觉外观变化,遮挡和背景杂波。卫星图像揭示了一个纹理问题;很难区分背景和感兴趣的对象。为了克服这一问题,利用图像的更多光谱特征,将离散小波变换(DWT)嵌入到快速区域卷积网络(FRCNN)中,这是目前最先进的目标检测方法之一。引入小波分解,提高了FRCNN的精度。使用两个不同的数据集对所提出策略的性能进行了测试、评估,并与原始FRCNN进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1