The role of ion charge density and solubility in the biosorption of heavy metals by natural biofilm matrix of polluted freshwater: the cases of Mg(II), Cr(VI), and Cu(II)
Wresti L. Anggayasti, L. N. Salamah, Augustriandy Rizkymaris, Tatsuya Yamamoto, A. Kurniawan
{"title":"The role of ion charge density and solubility in the biosorption of heavy metals by natural biofilm matrix of polluted freshwater: the cases of Mg(II), Cr(VI), and Cu(II)","authors":"Wresti L. Anggayasti, L. N. Salamah, Augustriandy Rizkymaris, Tatsuya Yamamoto, A. Kurniawan","doi":"10.1080/26395940.2023.2220571","DOIUrl":null,"url":null,"abstract":"ABSTRACT One major cause of aquatic pollution is the accumulation of heavy metal ions. This review is aimed to examine the application of natural biofilm as biosorbent for Mg(II), Cr(VI), and Cu(II), as an eco-friendly, economical, and efficient remediation strategy. Biofilm matrices were collected from different freshwater ecosystems to observe their biosorption properties. The compared EPM values of the different biofilms showed a universal trend. Additionally, the adsorption kinetics of all three ions occurred within 1 minute. The amount of adsorbed Mg(II) was higher than Cu(II), owing to the larger charge density of Mg(II). Interestingly, the b values revealed that Mg(II) was desorbed the quickest among the three ions, which is likely to be influenced by its highest solubility. Thus, both charge density and solubility determined the ions’ biosorption characteristics. Therefore, physicochemical properties of heavy metal pollutants should be understood to achieve an effective bioremediation by natural biofilm.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2023.2220571","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT One major cause of aquatic pollution is the accumulation of heavy metal ions. This review is aimed to examine the application of natural biofilm as biosorbent for Mg(II), Cr(VI), and Cu(II), as an eco-friendly, economical, and efficient remediation strategy. Biofilm matrices were collected from different freshwater ecosystems to observe their biosorption properties. The compared EPM values of the different biofilms showed a universal trend. Additionally, the adsorption kinetics of all three ions occurred within 1 minute. The amount of adsorbed Mg(II) was higher than Cu(II), owing to the larger charge density of Mg(II). Interestingly, the b values revealed that Mg(II) was desorbed the quickest among the three ions, which is likely to be influenced by its highest solubility. Thus, both charge density and solubility determined the ions’ biosorption characteristics. Therefore, physicochemical properties of heavy metal pollutants should be understood to achieve an effective bioremediation by natural biofilm.
期刊介绍:
Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms.
Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.