{"title":"Big Data Analytics Platforms for Electric Vehicle Integration in Transport Oriented Smart Cities","authors":"M. Hussain, M. Beg, M. S. Alam, S. Laskar","doi":"10.4018/978-1-7998-2466-4.ch051","DOIUrl":null,"url":null,"abstract":"Electric vehicles (EVs) are key players for transport oriented smart cities (TOSC) powered by smart grids (SG) because they help those cities to become greener by reducing vehicle emissions and carbon footprint. In this article, the authors analyze different use-cases to show how big data analytics (BDA) can play vital role for successful electric vehicle (EV) to smart grid (SG) integration. Followed by this, this article presents an edge computing model and highlights the advantages of employing such distributed edge paradigms towards satisfying the store, compute and networking (SCN) requirements of smart EV applications in TOSCs. This article also highlights the distinguishing features of the edge paradigm, towards supporting BDA activities in EV to SG integration in TOSCs. Finally, the authors provide a detailed overview of opportunities, trends, and challenges of both these computing techniques. In particular, this article discusses the deployment challenges and state-of-the-art solutions in edge privacy and edge forensics.","PeriodicalId":41462,"journal":{"name":"International Journal of Cyber Warfare and Terrorism","volume":"46 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cyber Warfare and Terrorism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-2466-4.ch051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Electric vehicles (EVs) are key players for transport oriented smart cities (TOSC) powered by smart grids (SG) because they help those cities to become greener by reducing vehicle emissions and carbon footprint. In this article, the authors analyze different use-cases to show how big data analytics (BDA) can play vital role for successful electric vehicle (EV) to smart grid (SG) integration. Followed by this, this article presents an edge computing model and highlights the advantages of employing such distributed edge paradigms towards satisfying the store, compute and networking (SCN) requirements of smart EV applications in TOSCs. This article also highlights the distinguishing features of the edge paradigm, towards supporting BDA activities in EV to SG integration in TOSCs. Finally, the authors provide a detailed overview of opportunities, trends, and challenges of both these computing techniques. In particular, this article discusses the deployment challenges and state-of-the-art solutions in edge privacy and edge forensics.