Komlan Payne, Jun-Ho Choi, Mohammad Ashraf Ali, C. Wu
{"title":"Highly-selective miniaturized first-order low-profile dual-band frequency selective surface","authors":"Komlan Payne, Jun-Ho Choi, Mohammad Ashraf Ali, C. Wu","doi":"10.1109/APS.2016.7696186","DOIUrl":null,"url":null,"abstract":"A miniaturized low-profile first-order dual-band frequency selective surface (FSS) is presented. The proposed structure consists of two resonators layers separated by an ultra-thin dielectric. One layer is a 2D periodic array of a conventional Jerusalem Cross (JC) shaped unit element. The other layer is based on a hybrid of cross slot dipole bounded by a square loop wire slot. The FSS structure utilizes resonant elements and strong coupling between the layers to achieve a high-Q dual bandpass response, delivering the first operating band at a low frequency. The main advantages of the proposed FSS include miniaturized periodic dimensions of about λ0/15, ultra-thin overall thickness (in the range of λ0/200, where λ0 is the free space wavelength at the lowest band of operation), and highly selective bandpass response. A prototype, simultaneously operating at S and C bands is fabricated and tested using a standard free space measurement.","PeriodicalId":6496,"journal":{"name":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"47 1","pages":"955-956"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2016.7696186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A miniaturized low-profile first-order dual-band frequency selective surface (FSS) is presented. The proposed structure consists of two resonators layers separated by an ultra-thin dielectric. One layer is a 2D periodic array of a conventional Jerusalem Cross (JC) shaped unit element. The other layer is based on a hybrid of cross slot dipole bounded by a square loop wire slot. The FSS structure utilizes resonant elements and strong coupling between the layers to achieve a high-Q dual bandpass response, delivering the first operating band at a low frequency. The main advantages of the proposed FSS include miniaturized periodic dimensions of about λ0/15, ultra-thin overall thickness (in the range of λ0/200, where λ0 is the free space wavelength at the lowest band of operation), and highly selective bandpass response. A prototype, simultaneously operating at S and C bands is fabricated and tested using a standard free space measurement.