Dynamic Surface-Based Adaptive Active Disturbance Rejection Control of Electrohydrostatic Actuators

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-23 DOI:10.3390/aerospace10090747
Xudong Han, Y. Fu, Yan Wang, Mingkang Wang, Deming Zhu
{"title":"Dynamic Surface-Based Adaptive Active Disturbance Rejection Control of Electrohydrostatic Actuators","authors":"Xudong Han, Y. Fu, Yan Wang, Mingkang Wang, Deming Zhu","doi":"10.3390/aerospace10090747","DOIUrl":null,"url":null,"abstract":"The control accuracy and stability of the electrohydrostatic actuator (EHA) are directly impacted by parameter uncertainty, disturbance uncertainty, and non-matching disturbance, which negatively impacts aircraft rudder maneuvering performance and even results in rudder chatter. A dynamic surface-based adaptive active disturbance rejection control (DSAADRC) is proposed as a solution for these issues. It does this by developing a novel parametric adaptive law driven by the combination of tracking error, parameter estimation error, and state estimation error to estimate the unknown parameters, using three low-order ESOs to estimate and compensate the uncertain disturbances online, and employing a dynamic surface method to obtain the differential values of virtual control signals in the backstepping method to deal with non-matching disturbances. In this research, a Lyapunov stability analysis demonstrates that the method can achieve the position tracking accuracy of the EHA under time-varying external disturbances after first establishing an EHA dynamics model with nonlinearity and uncertainty, followed by the design of an adaptive active disturbance rejection control method based on dynamic surfaces for the uncertainties and perturbations. In contrast to control strategies like Robust Control (RC) and Adaptive Robust Control (ARC), simulation and experiment comparison shows that the method has stronger anti-disturbance under time-varying external disturbances.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"28 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090747","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The control accuracy and stability of the electrohydrostatic actuator (EHA) are directly impacted by parameter uncertainty, disturbance uncertainty, and non-matching disturbance, which negatively impacts aircraft rudder maneuvering performance and even results in rudder chatter. A dynamic surface-based adaptive active disturbance rejection control (DSAADRC) is proposed as a solution for these issues. It does this by developing a novel parametric adaptive law driven by the combination of tracking error, parameter estimation error, and state estimation error to estimate the unknown parameters, using three low-order ESOs to estimate and compensate the uncertain disturbances online, and employing a dynamic surface method to obtain the differential values of virtual control signals in the backstepping method to deal with non-matching disturbances. In this research, a Lyapunov stability analysis demonstrates that the method can achieve the position tracking accuracy of the EHA under time-varying external disturbances after first establishing an EHA dynamics model with nonlinearity and uncertainty, followed by the design of an adaptive active disturbance rejection control method based on dynamic surfaces for the uncertainties and perturbations. In contrast to control strategies like Robust Control (RC) and Adaptive Robust Control (ARC), simulation and experiment comparison shows that the method has stronger anti-disturbance under time-varying external disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态表面的电静液执行器自适应自抗扰控制
电静液作动器的参数不确定性、扰动不确定性和非匹配扰动直接影响其控制精度和稳定性,对飞机方向舵的操纵性能产生负面影响,甚至导致方向舵颤振。针对这些问题,提出了一种基于动态表面的自适应自抗扰控制(DSAADRC)。通过建立一种由跟踪误差、参数估计误差和状态估计误差组合驱动的参数自适应律来估计未知参数,利用三个低阶eso在线估计和补偿不确定干扰,并采用动态曲面法获取反演方法中的虚拟控制信号的微分值来处理非匹配干扰。在本研究中,Lyapunov稳定性分析表明,该方法首先建立了具有非线性和不确定性的EHA动力学模型,然后针对不确定性和摄动设计了基于动态曲面的自适应自抗扰控制方法,可以在时变外部扰动下实现EHA的位置跟踪精度。与鲁棒控制(RC)和自适应鲁棒控制(ARC)等控制策略相比,仿真和实验对比表明,该方法在时变外部干扰下具有更强的抗扰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1