IMPACC: A Tightly Integrated MPI+OpenACC Framework Exploiting Shared Memory Parallelism

Jungwon Kim, Seyong Lee, J. Vetter
{"title":"IMPACC: A Tightly Integrated MPI+OpenACC Framework Exploiting Shared Memory Parallelism","authors":"Jungwon Kim, Seyong Lee, J. Vetter","doi":"10.1145/2907294.2907302","DOIUrl":null,"url":null,"abstract":"We propose IMPACC, an MPI+OpenACC framework for heterogeneous accelerator clusters. IMPACC tightly integrates MPI and OpenACC, while exploiting the shared memory parallelism in the target system. IMPACC dynamically adapts the input MPI+OpenACC applications on the target heterogeneous accelerator clusters to fully exploit target system-specific features. IMPACC provides the programmers with the unified virtual address space, automatic NUMA-friendly task-device mapping, efficient integrated communication routines, seamless streamlining of asynchronous executions, and transparent memory sharing. We have implemented IMPACC and evaluated its performance using three heterogeneous accelerator systems, including Titan supercomputer. Results show that IMPACC can achieve easier programming, higher performance, and better scalability than the current MPI+OpenACC model.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose IMPACC, an MPI+OpenACC framework for heterogeneous accelerator clusters. IMPACC tightly integrates MPI and OpenACC, while exploiting the shared memory parallelism in the target system. IMPACC dynamically adapts the input MPI+OpenACC applications on the target heterogeneous accelerator clusters to fully exploit target system-specific features. IMPACC provides the programmers with the unified virtual address space, automatic NUMA-friendly task-device mapping, efficient integrated communication routines, seamless streamlining of asynchronous executions, and transparent memory sharing. We have implemented IMPACC and evaluated its performance using three heterogeneous accelerator systems, including Titan supercomputer. Results show that IMPACC can achieve easier programming, higher performance, and better scalability than the current MPI+OpenACC model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMPACC:一个紧密集成的MPI+OpenACC框架,利用共享内存并行性
我们提出了IMPACC,一个MPI+OpenACC的异构加速器集群框架。IMPACC紧密地集成了MPI和OpenACC,同时利用了目标系统中的共享内存并行性。IMPACC动态地调整目标异构加速器集群上的输入MPI+OpenACC应用程序,以充分利用目标系统特定的特性。IMPACC为程序员提供了统一的虚拟地址空间、自动的numa友好型任务-设备映射、高效的集成通信例程、异步执行的无缝流线化以及透明的内存共享。我们使用包括Titan超级计算机在内的三种异构加速器系统实现了IMPACC,并对其性能进行了评估。结果表明,与现有的MPI+OpenACC模型相比,IMPACC可以实现更简单的编程、更高的性能和更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote Lecture : Learning Representations: Opportunities for Parallel and Distributed Computing Keynote Lecture : Gradient compression for efficient distributed deep learning Keynote Lecture : Neural circuit policies Keynote Lecture : Towards Robust, Large-scale Concurrent and Distributed Programming The Supercomputer "Fugaku" and Arm-SVE enabled A64FX processor for energy-efficiency and sustained application performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1