Strategies to detect dark-matter decays with line-intensity mapping

J. Bernal, A. Caputo, M. Kamionkowski
{"title":"Strategies to detect dark-matter decays with line-intensity mapping","authors":"J. Bernal, A. Caputo, M. Kamionkowski","doi":"10.1103/PHYSREVD.103.063523","DOIUrl":null,"url":null,"abstract":"The nature of dark matter is a longstanding mystery in cosmology, which can be studied with laboratory or collider experiments, as well as astrophysical and cosmological observations. In this work, we propose realistic and efficient strategies to detect radiative products from dark-matter decays with line-intensity mapping (LIM) experiments. This radiation will behave as a line interloper for the atomic and molecular spectral lines targeted by LIM surveys. The most distinctive signatures of the contribution from dark-matter radiative decays are an extra anisotropy on the LIM power spectrum due to projection effects, as well as a narrowing and a shift towards higher intensities of the voxel intensity distribution. We forecast the minimum rate of decays into two photons that LIM surveys will be sensitive to as function of the dark-matter mass in the range $\\sim 10^{-6}-10$ eV, and discuss how to reinterpret such results for dark matter that decays into a photon and another particle. We find that both the power spectrum and the voxel intensity distribution are expected to be very sensitive to the dark-matter contribution, with the voxel intensity distribution being more promising for most experiments considered. Interpreting our results in terms of the axion, we show that LIM surveys will be extremely competitive to detect its decay products, improving several orders of magnitudes (depending on the mass) the sensitivity of laboratory and astrophysical searches, especially in the mass range $\\sim 1-10$ eV.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.063523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The nature of dark matter is a longstanding mystery in cosmology, which can be studied with laboratory or collider experiments, as well as astrophysical and cosmological observations. In this work, we propose realistic and efficient strategies to detect radiative products from dark-matter decays with line-intensity mapping (LIM) experiments. This radiation will behave as a line interloper for the atomic and molecular spectral lines targeted by LIM surveys. The most distinctive signatures of the contribution from dark-matter radiative decays are an extra anisotropy on the LIM power spectrum due to projection effects, as well as a narrowing and a shift towards higher intensities of the voxel intensity distribution. We forecast the minimum rate of decays into two photons that LIM surveys will be sensitive to as function of the dark-matter mass in the range $\sim 10^{-6}-10$ eV, and discuss how to reinterpret such results for dark matter that decays into a photon and another particle. We find that both the power spectrum and the voxel intensity distribution are expected to be very sensitive to the dark-matter contribution, with the voxel intensity distribution being more promising for most experiments considered. Interpreting our results in terms of the axion, we show that LIM surveys will be extremely competitive to detect its decay products, improving several orders of magnitudes (depending on the mass) the sensitivity of laboratory and astrophysical searches, especially in the mass range $\sim 1-10$ eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用线强度映射探测暗物质衰变的策略
暗物质的本质是宇宙学中一个长期存在的谜团,可以通过实验室或对撞机实验,以及天体物理学和宇宙学观测来研究。在这项工作中,我们提出了现实和有效的策略来检测暗物质衰变的辐射产物与线强度映射(LIM)实验。这种辐射会干扰LIM巡天所瞄准的原子和分子光谱线。暗物质辐射衰减贡献的最显著特征是由于投影效应导致的LIM功率谱的额外各向异性,以及体素强度分布的变窄和向更高强度的转变。我们预测了最小衰变为两个光子的速率,LIM调查将敏感于暗物质质量在$\sim 10^{-6}-10$ eV范围内的函数,并讨论了如何重新解释暗物质衰变为光子和另一个粒子的结果。我们发现功率谱和体素强度分布都对暗物质的贡献非常敏感,其中体素强度分布在大多数实验中更有前景。从轴子的角度解释我们的结果,我们表明,LIM调查将极具竞争力地检测其衰变产物,提高几个数量级(取决于质量)实验室和天体物理搜索的灵敏度,特别是在质量范围1-10$ eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1