{"title":"Refund fraud analytics for an online retail purchases","authors":"Shylu John, Bhavin J. Shah, P. Kartha","doi":"10.1080/2573234X.2020.1776164","DOIUrl":null,"url":null,"abstract":"ABSTRACT Online shopping is growing fast across the globe and so are its complexities. Fraud is a complicated phenomenon and its mitigation is critical for running a smooth business. The case considered for the present study is fraud mitigation in return – refund process managed by the customer services of an online retail business. Predictive analytics approach was used to identify early indicators of agent refund fraud – a rare event. The technique used to solve the problem was a Penalised Likelihood based Logistic Regression model. The proposed model allowed the business to select top 5% sample of refund transactions with a higher likelihood of fraud as indicated and queue them for an audit. Implementation of this model resulted in an incremental lift in fraud capture rate.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"35 1","pages":"56 - 66"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2020.1776164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Online shopping is growing fast across the globe and so are its complexities. Fraud is a complicated phenomenon and its mitigation is critical for running a smooth business. The case considered for the present study is fraud mitigation in return – refund process managed by the customer services of an online retail business. Predictive analytics approach was used to identify early indicators of agent refund fraud – a rare event. The technique used to solve the problem was a Penalised Likelihood based Logistic Regression model. The proposed model allowed the business to select top 5% sample of refund transactions with a higher likelihood of fraud as indicated and queue them for an audit. Implementation of this model resulted in an incremental lift in fraud capture rate.