Use of Hopfield network for stereo vision correspondence

N. Nasrabadi, Wei Li, Bradley G. Epranian, Charles A. Butkus
{"title":"Use of Hopfield network for stereo vision correspondence","authors":"N. Nasrabadi, Wei Li, Bradley G. Epranian, Charles A. Butkus","doi":"10.1109/ICSMC.1989.71331","DOIUrl":null,"url":null,"abstract":"An optimization approach is used to solve the correspondence problem for a set of features extracted from a pair of stereo images. A cost function is defined to represent the constraints on the solution which is then mapped onto a 2-D neural network for minimization. Each neuron in the network represents a possible match between a feature in the left image and one in the right image. Correspondence is achieved by initializing all the neurons that represent the possible matches and allowing the network to use the compatibility measures between the matched points to settle down into a stable state.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"7 1","pages":"429-432 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An optimization approach is used to solve the correspondence problem for a set of features extracted from a pair of stereo images. A cost function is defined to represent the constraints on the solution which is then mapped onto a 2-D neural network for minimization. Each neuron in the network represents a possible match between a feature in the left image and one in the right image. Correspondence is achieved by initializing all the neurons that represent the possible matches and allowing the network to use the compatibility measures between the matched points to settle down into a stable state.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Hopfield网络进行立体视觉通信
采用一种优化方法解决了从一对立体图像中提取的一组特征的对应问题。定义了一个代价函数来表示对解的约束,然后将其映射到二维神经网络中以实现最小化。网络中的每个神经元代表了左图像和右图像的特征之间可能的匹配。对应是通过初始化所有代表可能匹配的神经元来实现的,并允许网络使用匹配点之间的兼容性措施来稳定到稳定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. LoST: A Mental Health Dataset of Low Self-esteem in Reddit Posts. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication. Pattern Recognition in Vital Signs Using Spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1