Lightweight Image Dehazing Algorithm Based on Detail Feature Enhancement

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152843
Chenxing Gao, Lingjun Chen, Caidan Zhao, Xiangyu Huang, Zhiqiang Wu
{"title":"Lightweight Image Dehazing Algorithm Based on Detail Feature Enhancement","authors":"Chenxing Gao, Lingjun Chen, Caidan Zhao, Xiangyu Huang, Zhiqiang Wu","doi":"10.1109/CSCWD57460.2023.10152843","DOIUrl":null,"url":null,"abstract":"Haze can reduce the visibility of the captured image, making it hard to accurately distinguish the details of each object in the captured image scene. Aiming at the problem of detail loss in existing dehazing models, this paper proposes a lightweight end-to-end image dehazing framework called DFE-GAN (Detail Feature Enhancement-GAN). The missing detail contours in the haze image can be predicted by employing a densely connected detail feature prediction network. Supplemented with a patch discriminator and an improved loss function, the restoration of details in the dehazing image is enhanced to improve image quality. We apply inverse residual modules to extract and fuse multi-scale features from images, which can ensure the real-time processing capability of the model. Compared with previous state-of-the-art approaches, solid experimental results on various benchmark datasets validate the robustness and effectiveness of our model.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"4 1","pages":"1538-1543"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152843","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Haze can reduce the visibility of the captured image, making it hard to accurately distinguish the details of each object in the captured image scene. Aiming at the problem of detail loss in existing dehazing models, this paper proposes a lightweight end-to-end image dehazing framework called DFE-GAN (Detail Feature Enhancement-GAN). The missing detail contours in the haze image can be predicted by employing a densely connected detail feature prediction network. Supplemented with a patch discriminator and an improved loss function, the restoration of details in the dehazing image is enhanced to improve image quality. We apply inverse residual modules to extract and fuse multi-scale features from images, which can ensure the real-time processing capability of the model. Compared with previous state-of-the-art approaches, solid experimental results on various benchmark datasets validate the robustness and effectiveness of our model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细节特征增强的轻量化图像去雾算法
雾霾会降低捕获图像的可见度,难以准确区分捕获图像场景中每个物体的细节。针对现有图像去雾模型中存在的细节丢失问题,提出了一种轻量级的端到端图像去雾框架DFE-GAN (detail Feature Enhancement-GAN)。利用密集连接的细节特征预测网络可以预测雾霾图像中缺失的细节轮廓。补充了补丁鉴别器和改进的损失函数,增强了去雾图像中细节的恢复,提高了图像质量。利用残差逆模对图像进行多尺度特征提取和融合,保证了模型的实时性。与以往最先进的方法相比,在各种基准数据集上的可靠实验结果验证了我们模型的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1