A Fast Proximal Point Algorithm for Generalized Graph Laplacian Learning

Zengde Deng, A. M. So
{"title":"A Fast Proximal Point Algorithm for Generalized Graph Laplacian Learning","authors":"Zengde Deng, A. M. So","doi":"10.1109/ICASSP40776.2020.9054185","DOIUrl":null,"url":null,"abstract":"Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1 1","pages":"5425-5429"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义图拉普拉斯学习的快速近点算法
图学习是机器学习、统计学和信号处理中最重要的任务之一。本文主要研究广义图拉普拉斯(GGL)的学习问题,并提出了一种有效的算法。我们首先利用软阈值技术将GGL问题转化为等价问题,充分利用隐藏在目标函数中的稀疏性结构。此外,我们提出了一种快速的近点算法(PPA)来解决变换后的GGL问题,并建立了算法的线性收敛速度。在合成数据和实际数据上进行的大量数值实验表明,软阈值技术加速了我们的PPA方法,PPA在速度上优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1