Design and Performance of a TLP Type Floating Support Structure for a 6MW Offshore Wind Turbine

Bonnaffoux Guillaume, Bauduin Christian, Bertolotti Christine, Melis Cecile, Perdrizet Timothee, Poirette Yann
{"title":"Design and Performance of a TLP Type Floating Support Structure for a 6MW Offshore Wind Turbine","authors":"Bonnaffoux Guillaume, Bauduin Christian, Bertolotti Christine, Melis Cecile, Perdrizet Timothee, Poirette Yann","doi":"10.4043/29371-MS","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to present the design and performance of an offshore floating wind turbine support structure and associated station keeping system, for a commercial 6 MW turbine. The results reported in this paper are based on a joint desk study performed by SBM and IFPEN for the development of this new floating support structure concept.\n The proposed system has been extensively analyzed thanks to time domain simulation software. Time domain models incorporate the wind turbine, the station keeping system, as well as structural components of the floating foundation. The system’s behavior has been assessed for a variety of environment conditions and turbine conditions (operating, idling, fault), resulting in an extensive design load case table. In addition to the nominal system, a number of sensitivities have been investigated to test the system response to various effects: marine growth accumulation on the floating support structure, anchor position tolerance, variations of water level.\n Results produced during this study show the good performance of the proposed floating wind turbine support structure and components. The proposed arrangement is capable of sustaining 20 years of operation with environment conditions up to the 50-year return period. The motions of the floating support structure are beneficial for the turbine performance, with low inclinations and low nacelle accelerations. As a consequence of these floating support structure’s low motions, the floating offshore wind turbine production is only marginally lower than the production of the same turbine on a fixed offshore foundation in the same environment. Production can occur up to the 50-year joint environment conditions.\n The work presented in this paper formed part of a design dossier independently reviewed by a certification body to obtain an ‘Approval in Principle‘ for the development of the floating support structure. The study has shown that the floater motion characteristics allow similar turbine production levels to be achieved by a turbine on a fixed offshore foundation, providing support to move of floating offshore energy production.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29371-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this paper is to present the design and performance of an offshore floating wind turbine support structure and associated station keeping system, for a commercial 6 MW turbine. The results reported in this paper are based on a joint desk study performed by SBM and IFPEN for the development of this new floating support structure concept. The proposed system has been extensively analyzed thanks to time domain simulation software. Time domain models incorporate the wind turbine, the station keeping system, as well as structural components of the floating foundation. The system’s behavior has been assessed for a variety of environment conditions and turbine conditions (operating, idling, fault), resulting in an extensive design load case table. In addition to the nominal system, a number of sensitivities have been investigated to test the system response to various effects: marine growth accumulation on the floating support structure, anchor position tolerance, variations of water level. Results produced during this study show the good performance of the proposed floating wind turbine support structure and components. The proposed arrangement is capable of sustaining 20 years of operation with environment conditions up to the 50-year return period. The motions of the floating support structure are beneficial for the turbine performance, with low inclinations and low nacelle accelerations. As a consequence of these floating support structure’s low motions, the floating offshore wind turbine production is only marginally lower than the production of the same turbine on a fixed offshore foundation in the same environment. Production can occur up to the 50-year joint environment conditions. The work presented in this paper formed part of a design dossier independently reviewed by a certification body to obtain an ‘Approval in Principle‘ for the development of the floating support structure. The study has shown that the floater motion characteristics allow similar turbine production levels to be achieved by a turbine on a fixed offshore foundation, providing support to move of floating offshore energy production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6MW海上风力发电机组张力腿式浮式支撑结构设计与性能
本文的目的是介绍海上浮式风力机支撑结构和相关站保持系统的设计和性能,用于商用6mw风力机。本文报告的结果是基于SBM和IFPEN为开发这种新的浮动支撑结构概念而进行的联合办公桌研究。利用时域仿真软件对该系统进行了广泛的分析。时域模型包括风力涡轮机,站保持系统,以及浮式基础的结构部件。系统的性能在各种环境条件和涡轮机条件(运行、空转、故障)下进行了评估,从而得出了一个广泛的设计负载情况表。除了标称系统外,还研究了许多敏感性,以测试系统对各种影响的响应:海洋生长积累对浮动支撑结构的影响,锚位公差,水位变化。研究结果表明,所提出的浮式风力发电机支撑结构和部件具有良好的性能。拟议的安排能够在环境条件下维持20年的运作,直至50年的回返期。浮动支撑结构的运动有利于涡轮性能,具有低倾斜度和低机舱加速度。由于这些浮式支撑结构的低运动,浮式海上风力涡轮机的产量仅略低于相同环境下在固定海上基础上生产的相同涡轮机。生产可以发生长达50年的联合环境条件。本文中介绍的工作是由认证机构独立审查的设计档案的一部分,以获得浮动支撑结构开发的“原则上批准”。研究表明,浮子的运动特性允许在固定海上基础上的涡轮机实现类似的涡轮机生产水平,为浮子海上能源生产的移动提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offshore Liquefied Natural Gas LNG and Monetization A Case Study of an Independent Third Party Review of Subsea HPHT Technologies Designed and Qualified by a Joint Development Agreement Optimized SMR Process with Advanced Vessel Economizer Experimental and Numerical Studies on the Drift Velocity of Two-Phase Gas and High-Viscosity-Liquid Slug Flow in Pipelines Applied Optimal Reservoir Management: A Field Case Experience in Campos Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1