Optimization of PID controller for water level control of the nuclear steam generator using PSO and GA

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Kerntechnik Pub Date : 2022-09-15 DOI:10.1515/kern-2021-1038
O. Safarzadeh, Amir Tizdast
{"title":"Optimization of PID controller for water level control of the nuclear steam generator using PSO and GA","authors":"O. Safarzadeh, Amir Tizdast","doi":"10.1515/kern-2021-1038","DOIUrl":null,"url":null,"abstract":"Abstract The water level control system implicated in the nuclear steam generator has played an essential role in unexpected shutdowns of the power plant. According to reports, about 25% of the emergency power blackouts are caused by improper level control systems. The effectiveness of optimization methods in designing a controller is currently proved in different disciplines. The novelty of this paper is the proportional integral derivative (PID) controller tuning of nuclear steam generator by particle swarm optimization (PSO) and genetic algorithm (GA) for the lowest steady-state error, overshoot, undershoot, and settling time. Different types of the cost function are employed to obtain the controller gains. The integral of the absolute error (IAE), square error (ISE), time-weighted average error (ITAE), time-weighted square error (ITSE), and a weighted function based on overshoot, undershoot, and settling time are used. The gain scheduling of optimized PIDs is used to have an entire operating range control system. The desired load-following and stability of the optimized PID controller are investigated under both time and frequency domains using trajectory tracking, disturbance rejection, and Nichols chart criterion.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"35 1","pages":"597 - 606"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2021-1038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The water level control system implicated in the nuclear steam generator has played an essential role in unexpected shutdowns of the power plant. According to reports, about 25% of the emergency power blackouts are caused by improper level control systems. The effectiveness of optimization methods in designing a controller is currently proved in different disciplines. The novelty of this paper is the proportional integral derivative (PID) controller tuning of nuclear steam generator by particle swarm optimization (PSO) and genetic algorithm (GA) for the lowest steady-state error, overshoot, undershoot, and settling time. Different types of the cost function are employed to obtain the controller gains. The integral of the absolute error (IAE), square error (ISE), time-weighted average error (ITAE), time-weighted square error (ITSE), and a weighted function based on overshoot, undershoot, and settling time are used. The gain scheduling of optimized PIDs is used to have an entire operating range control system. The desired load-following and stability of the optimized PID controller are investigated under both time and frequency domains using trajectory tracking, disturbance rejection, and Nichols chart criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法和遗传算法的核蒸汽发生器水位PID控制器优化
摘要核蒸汽发生器水位控制系统在电站意外停堆中起着至关重要的作用。据报道,大约25%的紧急停电是由于液位控制系统不正确造成的。优化方法在控制器设计中的有效性目前在不同的学科中得到了证明。本文的新颖之处在于利用粒子群优化和遗传算法对核蒸汽发生器的比例积分导数(PID)控制器进行最小稳态误差、超调、欠调和沉降时间的整定。采用不同类型的代价函数来获得控制器增益。采用绝对误差(IAE)、平方误差(ISE)、时间加权平均误差(ITAE)、时间加权平方误差(ITSE)的积分,以及基于超调、欠调和沉降时间的加权函数。通过优化pid的增益调度,实现了系统的全工作范围控制。利用轨迹跟踪、干扰抑制和尼科尔斯图准则,研究了优化后的PID控制器在时域和频域下的期望负载跟踪和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
期刊最新文献
Evaluation of the optimum safety performance of the nuclear reactor compact grounding system under lightning strikes and ground fault CFD and machine learning based hybrid model for passive dilution of helium in a top ventilated compartment Probing 6He induced reactions with nuclear level density Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1