{"title":"Track-Clustering Error Evaluation for Track-Based Multi-camera Tracking System Employing Human Re-identification","authors":"Chih-Wei Wu, Meng-Ting Zhong, Yu-Yu Tsao, Shao-Wen Yang, Yen-kuang Chen, Shao-Yi Chien","doi":"10.1109/CVPRW.2017.184","DOIUrl":null,"url":null,"abstract":"In this study, we present a set of new evaluation measures for the track-based multi-camera tracking (T-MCT) task leveraging the clustering measurements. We demonstrate that the proposed evaluation measures provide notable advantages over previous ones. Moreover, a distributed and online T-MCT framework is proposed, where re-identification (Re-id) is embedded in T-MCT, to confirm the validity of the proposed evaluation measures. Experimental results reveal that with the proposed evaluation measures, the performance of T-MCT can be accurately measured, which is highly correlated to the performance of Re-id. Furthermore, it is also noted that our T-MCT framework achieves competitive score on the DukeMTMC dataset when compared to the previous work that used global optimization algorithms. Both the evaluation measures and the inter-camera tracking framework are proven to be the stepping stone for multi-camera tracking.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"14 1","pages":"1416-1424"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this study, we present a set of new evaluation measures for the track-based multi-camera tracking (T-MCT) task leveraging the clustering measurements. We demonstrate that the proposed evaluation measures provide notable advantages over previous ones. Moreover, a distributed and online T-MCT framework is proposed, where re-identification (Re-id) is embedded in T-MCT, to confirm the validity of the proposed evaluation measures. Experimental results reveal that with the proposed evaluation measures, the performance of T-MCT can be accurately measured, which is highly correlated to the performance of Re-id. Furthermore, it is also noted that our T-MCT framework achieves competitive score on the DukeMTMC dataset when compared to the previous work that used global optimization algorithms. Both the evaluation measures and the inter-camera tracking framework are proven to be the stepping stone for multi-camera tracking.