{"title":"Multiplicative Error Models: 20 years on","authors":"Fabrizio Cipollini , Giampiero M. Gallo","doi":"10.1016/j.ecosta.2022.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 209-229"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.