Bistatic Forward-Looking SAR Motion Error Compensation Method Based on Keystone Transform and Modified Autofocus Back-Projection

Q. Yang, Deming Guo, Zhongyu Li, Junjie Wu, Yulin Huang, Haiguang Yang, Jianyu Yang
{"title":"Bistatic Forward-Looking SAR Motion Error Compensation Method Based on Keystone Transform and Modified Autofocus Back-Projection","authors":"Q. Yang, Deming Guo, Zhongyu Li, Junjie Wu, Yulin Huang, Haiguang Yang, Jianyu Yang","doi":"10.1109/IGARSS.2019.8898219","DOIUrl":null,"url":null,"abstract":"With appropriate geometry configurations, bistatic synthetic aperture radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. In BFSAR, the compensation of the spatially variant motion errors is of great significance to get a well-focused image. In this paper, a motion compensation method based on keystone transform and modified autofocus back-projection is presented to deal with this problem. Keystone transform is applied to remove the spatial variation of range cell migration (RCM) and the first-order term of RCM errors simultaneously, prepares for the following modified autofocus back-projection, which can eliminate the high-order term of azimuth phase errors. Simulation results verify the validity and efficiency of the presented method.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"16 1","pages":"827-830"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With appropriate geometry configurations, bistatic synthetic aperture radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. In BFSAR, the compensation of the spatially variant motion errors is of great significance to get a well-focused image. In this paper, a motion compensation method based on keystone transform and modified autofocus back-projection is presented to deal with this problem. Keystone transform is applied to remove the spatial variation of range cell migration (RCM) and the first-order term of RCM errors simultaneously, prepares for the following modified autofocus back-projection, which can eliminate the high-order term of azimuth phase errors. Simulation results verify the validity and efficiency of the presented method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Keystone变换和改进自动对焦反投影的双基地前视SAR运动误差补偿方法
通过适当的几何构型,双基地合成孔径雷达(SAR)可以突破单基地合成孔径雷达在前视成像方面的局限性。由于这种能力,双基地前视SAR (BFSAR)具有广泛的潜在应用前景。在BFSAR中,对空间运动误差的补偿对于获得聚焦良好的图像具有重要意义。针对这一问题,提出了一种基于梯形变换和改进自聚焦反投影的运动补偿方法。采用梯形变换同时去除距离元迁移(RCM)的空间变化和RCM误差的一阶项,为后续改进的自聚焦反投影做准备,该方法可以消除方位相位误差的高阶项。仿真结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1