A Core-Shell Gold Nanorod@Layered Double Hydroxide Nanomaterial with High Efficient Photothermal Conversion and Its Application in Antibacterial and Tumor Therapy

Kun Ma, Yawen Li, Yuzhi Chen, Xin Zhang, Chunyuan Chen, Haoyu Yu, Jia Huang, Zhiying Yang, Xuefei Wang, Zhuo Wang
{"title":"A Core-Shell Gold Nanorod@Layered Double Hydroxide Nanomaterial with High Efficient Photothermal Conversion and Its Application in Antibacterial and Tumor Therapy","authors":"Kun Ma, Yawen Li, Yuzhi Chen, Xin Zhang, Chunyuan Chen, Haoyu Yu, Jia Huang, Zhiying Yang, Xuefei Wang, Zhuo Wang","doi":"10.2139/ssrn.3351832","DOIUrl":null,"url":null,"abstract":"Photothermal conversion efficiency (η) of gold nanorods (GNRs) can be tuned by enlarging the aspect ratio and forming core-shell structure. Herein, an easy synthesis method is developed to construct core-shell GNR@LDH nanostructure with GNRs and layered double hydroxides (LDHs). The interaction between Au and LDHs results some elec-tron deficiency on the surface of Au and the more electrons induce more thermal energy conversion. The η value of GNR@LDH can reach up to 59.85% under the 808 nm laser irradiation, which is the highest efficiency compared with all reported GNRs-based PTT materials. CTAB can be replaced totally during the synthesis process, and GNRs keep a good dispersion in LDHs. This core-shell composite GNR@LDH can be applied in photothermal antibacterial, tumor therapy and biological imaging with low dosage and nontoxicity.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3351832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Photothermal conversion efficiency (η) of gold nanorods (GNRs) can be tuned by enlarging the aspect ratio and forming core-shell structure. Herein, an easy synthesis method is developed to construct core-shell GNR@LDH nanostructure with GNRs and layered double hydroxides (LDHs). The interaction between Au and LDHs results some elec-tron deficiency on the surface of Au and the more electrons induce more thermal energy conversion. The η value of GNR@LDH can reach up to 59.85% under the 808 nm laser irradiation, which is the highest efficiency compared with all reported GNRs-based PTT materials. CTAB can be replaced totally during the synthesis process, and GNRs keep a good dispersion in LDHs. This core-shell composite GNR@LDH can be applied in photothermal antibacterial, tumor therapy and biological imaging with low dosage and nontoxicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核壳金Nanorod@Layered高效光热转化双氢氧化物纳米材料及其在抗菌和肿瘤治疗中的应用
通过增大宽高比和形成核壳结构,可以调节金纳米棒的光热转换效率(η)。本文提出了一种简单的合成方法,利用gnr和层状双氢氧化物(LDHs)构建核壳GNR@LDH纳米结构。Au与LDHs的相互作用导致Au表面存在一定的电子-电子缺陷,电子越多,热能量转换越大。在808 nm激光辐照下,GNR@LDH的η值可达59.85%,是目前报道的gnrs基PTT材料中效率最高的。CTAB在合成过程中可以完全替代,gnr在LDHs中保持了良好的分散性。该核壳复合材料GNR@LDH具有低剂量、无毒的特点,可应用于光热抗菌、肿瘤治疗和生物成像等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating a Methodology to Train Manufacturing SMEs: The Lift Europe Case Scenario-based Simulation for Energy Optimization in Learning Factory Environments Rod Eutectic Growth of Al-Al 3Sc in Al-2 Wt. % Sc Undercooled Melt Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery Designing an Improved Structure of the Tool for Repairing the Brake Pipe Connectors in Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1