Modeling, Analysis, and Design of a Fuzzy Logic Controller for an AHU in the S.J. Carew Building at Memorial University

Almahdi Abdo-Allah, T. Iqbal, K. Pope
{"title":"Modeling, Analysis, and Design of a Fuzzy Logic Controller for an AHU in the S.J. Carew Building at Memorial University","authors":"Almahdi Abdo-Allah, T. Iqbal, K. Pope","doi":"10.1155/2018/4540387","DOIUrl":null,"url":null,"abstract":"Proper functioning of heating, ventilation, and air conditioning (HVAC) systems is important for efficient thermal management, as well as operational costs. Most of these systems use nonlinear time variances to handle disturbances, along with controllers that try to balance rise times and stability. The latest generation of fuzzy logic controllers (FLC) is algorithm-based and is used to control indoor temperatures, CO2 concentrations in air handling units (AHUs), and fan speeds. These types of controllers work through the manipulation of dampers, fans, and valves to adjust flow rates of water and air. In this paper, modulating equal percentage globe valves, fans speed, and dampers position have been modeled according to exact flow rates of hot water and air into the building, and a new approach to adapting FLC through the modification of fuzzy rules surface is presented. The novel system is a redesign of an FLC using MATLAB/Simulink, with the results showing an enhancement in thermal comfort levels.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4540387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Proper functioning of heating, ventilation, and air conditioning (HVAC) systems is important for efficient thermal management, as well as operational costs. Most of these systems use nonlinear time variances to handle disturbances, along with controllers that try to balance rise times and stability. The latest generation of fuzzy logic controllers (FLC) is algorithm-based and is used to control indoor temperatures, CO2 concentrations in air handling units (AHUs), and fan speeds. These types of controllers work through the manipulation of dampers, fans, and valves to adjust flow rates of water and air. In this paper, modulating equal percentage globe valves, fans speed, and dampers position have been modeled according to exact flow rates of hot water and air into the building, and a new approach to adapting FLC through the modification of fuzzy rules surface is presented. The novel system is a redesign of an FLC using MATLAB/Simulink, with the results showing an enhancement in thermal comfort levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纪念大学S.J. Carew大楼空调模糊控制器的建模、分析与设计
供暖、通风和空调(HVAC)系统的正常运行对于有效的热管理和运营成本至关重要。这些系统中的大多数使用非线性时间方差来处理干扰,以及试图平衡上升时间和稳定性的控制器。最新一代模糊逻辑控制器(FLC)是基于算法的,用于控制室内温度、空气处理单元(ahu)中的二氧化碳浓度和风扇速度。这些类型的控制器通过操纵阻尼器、风扇和阀门来调节水和空气的流速。本文根据进入建筑物的热水和空气的精确流量,建立了调节等百分比截止阀、风机转速和阻尼器位置的模型,并提出了一种通过修改模糊规则面来适应FLC的新方法。该新型系统是利用MATLAB/Simulink对FLC进行重新设计,结果显示热舒适度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
期刊最新文献
Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO Catalytic Pyrolysis of Plastic Waste to Liquid Fuel Using Local Clay Catalyst Optimization of Syngas Quality for Fischer-Tropsch Synthesis Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1