{"title":"Trace equivalence decision: negative tests and non-determinism","authors":"Vincent Cheval, Hubert Comon-Lundh, S. Delaune","doi":"10.1145/2046707.2046744","DOIUrl":null,"url":null,"abstract":"We consider security properties of cryptographic protocols that can be modeled using the notion of trace equivalence. The notion of equivalence is crucial when specifying privacy-type properties, like anonymity, vote-privacy, and unlinkability.\n In this paper, we give a calculus that is close to the applied pi calculus and that allows one to capture most existing protocols that rely on classical cryptographic primitives. First, we propose a symbolic semantics for our calculus relying on constraint systems to represent infinite sets of possible traces, and we reduce the decidability of trace equivalence to deciding a notion of symbolic equivalence between sets of constraint systems. Second, we develop an algorithm allowing us to decide whether two sets of constraint systems are in symbolic equivalence or not. Altogether, this yields the first decidability result of trace equivalence for a general class of processes that may involve else branches and/or private channels (for a bounded number of sessions).","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"22 1","pages":"321-330"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
We consider security properties of cryptographic protocols that can be modeled using the notion of trace equivalence. The notion of equivalence is crucial when specifying privacy-type properties, like anonymity, vote-privacy, and unlinkability.
In this paper, we give a calculus that is close to the applied pi calculus and that allows one to capture most existing protocols that rely on classical cryptographic primitives. First, we propose a symbolic semantics for our calculus relying on constraint systems to represent infinite sets of possible traces, and we reduce the decidability of trace equivalence to deciding a notion of symbolic equivalence between sets of constraint systems. Second, we develop an algorithm allowing us to decide whether two sets of constraint systems are in symbolic equivalence or not. Altogether, this yields the first decidability result of trace equivalence for a general class of processes that may involve else branches and/or private channels (for a bounded number of sessions).