A VLSI hardware accelerator for dynamic time warping

Q4 Computer Science 模式识别与人工智能 Pub Date : 1992-08-30 DOI:10.1109/ICPR.1992.202121
V. Sundaresan, S. Nichani, N. Ranganathan, R. Sankar
{"title":"A VLSI hardware accelerator for dynamic time warping","authors":"V. Sundaresan, S. Nichani, N. Ranganathan, R. Sankar","doi":"10.1109/ICPR.1992.202121","DOIUrl":null,"url":null,"abstract":"Describes an area and time efficient systolic array architecture for computations in Dynamic Time Warping (DTW). The special purpose architecture is used to perform the band matrix multiplication in order to compute the local distance metric based on Itakura's log likelihood distance. The time complexity of the algorithm is O(nk) where n and k are the number of elements in the row of the first and second input matrices. The number of processors is equal to the bandwidth w of the output band matrix. The speedup of the parallel algorithm compared to the sequential algorithm is wz where z is the multiplier stages within a PE. The parallel algorithm can be implemented as a single VLSI chip.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.202121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

Abstract

Describes an area and time efficient systolic array architecture for computations in Dynamic Time Warping (DTW). The special purpose architecture is used to perform the band matrix multiplication in order to compute the local distance metric based on Itakura's log likelihood distance. The time complexity of the algorithm is O(nk) where n and k are the number of elements in the row of the first and second input matrices. The number of processors is equal to the bandwidth w of the output band matrix. The speedup of the parallel algorithm compared to the sequential algorithm is wz where z is the multiplier stages within a PE. The parallel algorithm can be implemented as a single VLSI chip.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于动态时间规整的VLSI硬件加速器
描述用于动态时间翘曲(DTW)计算的面积和时间效率高的收缩阵列架构。基于Itakura对数似然距离计算局部距离度量,采用专用结构进行带矩阵乘法。算法的时间复杂度为O(nk),其中n和k分别为第一个和第二个输入矩阵的行中元素的个数。处理器的数量等于输出频带矩阵的带宽w。与顺序算法相比,并行算法的加速是wz,其中z是PE内的乘法器阶段。该并行算法可以在单个VLSI芯片上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1