{"title":"Sundials/ML: Connecting OCaml to the Sundials Numeric Solvers","authors":"T. Bourke, Jun Inoue, Marc Pouzet","doi":"10.4204/EPTCS.285.4","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of a comprehensive OCaml interface to the Sundials library of numeric solvers for ordinary differential equations, differential algebraic equations, and non-linear equations. The interface provides a convenient and memory-safe alternative to using Sundials directly from C and facilitates application development by integrating with higher-level language features, like garbage-collected memory management, algebraic data types, and exceptions. Our benchmark results suggest that the interface overhead is acceptable: the standard examples are rarely twice as slow in OCaml than in C, and often less than 50% slower. The challenges in interfacing with Sundials are to efficiently and safely share data structures between OCaml and C, to support multiple implementations of vector operations and linear solvers through a common interface, and to manage calls and error signalling to and from OCaml. We explain how we overcame these difficulties using a combination of standard techniques such as phantom types and polymorphic variants, and carefully crafted data representations.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"25 1","pages":"101-130"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.285.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes the design and implementation of a comprehensive OCaml interface to the Sundials library of numeric solvers for ordinary differential equations, differential algebraic equations, and non-linear equations. The interface provides a convenient and memory-safe alternative to using Sundials directly from C and facilitates application development by integrating with higher-level language features, like garbage-collected memory management, algebraic data types, and exceptions. Our benchmark results suggest that the interface overhead is acceptable: the standard examples are rarely twice as slow in OCaml than in C, and often less than 50% slower. The challenges in interfacing with Sundials are to efficiently and safely share data structures between OCaml and C, to support multiple implementations of vector operations and linear solvers through a common interface, and to manage calls and error signalling to and from OCaml. We explain how we overcame these difficulties using a combination of standard techniques such as phantom types and polymorphic variants, and carefully crafted data representations.