Automated snippet generation for online advertising

Stamatina Thomaidou, Ismini Lourentzou, Panagiotis Katsivelis-Perakis, M. Vazirgiannis
{"title":"Automated snippet generation for online advertising","authors":"Stamatina Thomaidou, Ismini Lourentzou, Panagiotis Katsivelis-Perakis, M. Vazirgiannis","doi":"10.1145/2505515.2507876","DOIUrl":null,"url":null,"abstract":"Products, services or brands can be advertised alongside the search results in major search engines, while recently smaller displays on devices like tablets and smartphones have imposed the need for smaller ad texts. In this paper, we propose a method that produces in an automated manner compact text ads (promotional text snippets), given as input a product description webpage (landing page). The challenge is to produce a small comprehensive ad while maintaining at the same time relevance, clarity, and attractiveness. Our method includes the following phases. Initially, it extracts relevant and important n-grams (keywords) given the landing page. The keywords reserved must have a positive meaning in order to have a call-to-action style, thus we attempt sentiment analysis on them. Next, we build an Advertising Language Model to evaluate phrases in terms of their marketing appeal. We experiment with two variations of our method and we show that they outperform all the baseline approaches.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"151 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Products, services or brands can be advertised alongside the search results in major search engines, while recently smaller displays on devices like tablets and smartphones have imposed the need for smaller ad texts. In this paper, we propose a method that produces in an automated manner compact text ads (promotional text snippets), given as input a product description webpage (landing page). The challenge is to produce a small comprehensive ad while maintaining at the same time relevance, clarity, and attractiveness. Our method includes the following phases. Initially, it extracts relevant and important n-grams (keywords) given the landing page. The keywords reserved must have a positive meaning in order to have a call-to-action style, thus we attempt sentiment analysis on them. Next, we build an Advertising Language Model to evaluate phrases in terms of their marketing appeal. We experiment with two variations of our method and we show that they outperform all the baseline approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动片段生成在线广告
产品、服务或品牌广告可以在主要搜索引擎的搜索结果旁边显示,而最近平板电脑和智能手机等设备上的屏幕越来越小,因此需要更小的广告文本。在本文中,我们提出了一种以自动方式生成紧凑文本广告(促销文本片段)的方法,将产品描述网页(着陆页)作为输入。挑战在于制作一个小而全面的广告,同时保持相关性,清晰度和吸引力。我们的方法包括以下几个阶段。最初,它提取相关的和重要的n-gram(关键词)给定的着陆页。保留的关键词必须具有积极的意义,才能具有号召性的风格,因此我们尝试对它们进行情感分析。接下来,我们建立了一个广告语言模型来评估短语的营销吸引力。我们用我们方法的两种变体进行了实验,结果表明它们的性能优于所有基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1