Progress into lithium-ion battery research

Azemtsop Manfo Theodore
{"title":"Progress into lithium-ion battery research","authors":"Azemtsop Manfo Theodore","doi":"10.1177/17475198231183349","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries have transformed our lives and are now found in everything from mobile phones to laptop computers and electric cars. In lithium-ion batteries, an adequate electrolyte was developed using a winding process nearly related to the progress of electrode chemistries. In this technology, a metal oxide is a cathode, and porous carbon is the anode. The electrochemical interaction of anode material with lithium could produce an intercalation product, which could form the basis of a revolutionary battery system. Structural retention causes this reaction to proceed quickly and with a high degree of reversibility at room temperature. Titanium disulfide is one of the latest solid cathode materials. In this review, the history of intercalation electrodes, electrolytes, and basic principles related to batteries based on intercalation processes and their effect on battery performance is reported.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198231183349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries have transformed our lives and are now found in everything from mobile phones to laptop computers and electric cars. In lithium-ion batteries, an adequate electrolyte was developed using a winding process nearly related to the progress of electrode chemistries. In this technology, a metal oxide is a cathode, and porous carbon is the anode. The electrochemical interaction of anode material with lithium could produce an intercalation product, which could form the basis of a revolutionary battery system. Structural retention causes this reaction to proceed quickly and with a high degree of reversibility at room temperature. Titanium disulfide is one of the latest solid cathode materials. In this review, the history of intercalation electrodes, electrolytes, and basic principles related to batteries based on intercalation processes and their effect on battery performance is reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池研究进展
锂离子电池改变了我们的生活,现在从手机到笔记本电脑再到电动汽车,锂离子电池无处不在。在锂离子电池中,使用与电极化学进展几乎相关的缠绕过程开发了适当的电解质。在这项技术中,金属氧化物是阴极,多孔碳是阳极。阳极材料与锂的电化学相互作用可以产生插层产物,这可以形成革命性电池系统的基础。结构保留使反应在室温下进行得很快且具有高度可逆性。二硫化钛是最新的固体正极材料之一。本文从插层过程及其对电池性能的影响等方面,综述了插层电极、插层电解质的发展历史,以及与电池相关的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
期刊最新文献
Preparation of ZrO2/Na-β and ZrO2/H-β catalysts and their catalytic performance for the Meerwein–Ponndorf–Verley reaction of cyclohexanone and isopropanol Spectroscopic and DFT study of tris(β-diketonato)cobalt(III) complexes One-pot, simple, and facile synthesis of 4-(3-benzylbenzo[d]thiazol-2(3H)-ylidene)-cyclohexa-2,5-dien-1-one derivatives via a novel three-component reaction An effective calix[4]arene-based adsorbent for tetracycline removal from water systems: Kinetic, isotherm, and thermodynamic studies A thermoregulated phase-transfer ruthenium nanocatalyst for the atmospheric hydrogenation of α,β-unsaturated ketones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1