SCC: Semantic Context Cascade for Efficient Action Detection

Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, Bernard Ghanem
{"title":"SCC: Semantic Context Cascade for Efficient Action Detection","authors":"Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, Bernard Ghanem","doi":"10.1109/CVPR.2017.338","DOIUrl":null,"url":null,"abstract":"Despite the recent advances in large-scale video analysis, action detection remains as one of the most challenging unsolved problems in computer vision. This snag is in part due to the large volume of data that needs to be analyzed to detect actions in videos. Existing approaches have mitigated the computational cost, but still, these methods lack rich high-level semantics that helps them to localize the actions quickly. In this paper, we introduce a Semantic Cascade Context (SCC) model that aims to detect action in long video sequences. By embracing semantic priors associated with human activities, SCC produces high-quality class-specific action proposals and prune unrelated activities in a cascade fashion. Experimental results in ActivityNet unveils that SCC achieves state-of-the-art performance for action detection while operating at real time.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"3175-3184"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

Despite the recent advances in large-scale video analysis, action detection remains as one of the most challenging unsolved problems in computer vision. This snag is in part due to the large volume of data that needs to be analyzed to detect actions in videos. Existing approaches have mitigated the computational cost, but still, these methods lack rich high-level semantics that helps them to localize the actions quickly. In this paper, we introduce a Semantic Cascade Context (SCC) model that aims to detect action in long video sequences. By embracing semantic priors associated with human activities, SCC produces high-quality class-specific action proposals and prune unrelated activities in a cascade fashion. Experimental results in ActivityNet unveils that SCC achieves state-of-the-art performance for action detection while operating at real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效动作检测的语义上下文级联
尽管最近在大规模视频分析方面取得了进展,但动作检测仍然是计算机视觉中最具挑战性的未解决问题之一。这种障碍部分是由于需要分析大量数据来检测视频中的动作。现有的方法已经降低了计算成本,但是这些方法仍然缺乏丰富的高级语义来帮助它们快速定位动作。在本文中,我们引入了一个语义级联上下文(SCC)模型,旨在检测长视频序列中的动作。通过采用与人类活动相关的语义先验,SCC产生高质量的类特定行动建议,并以级联方式修剪不相关的活动。ActivityNet的实验结果表明,SCC在实时操作时实现了最先进的动作检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1