{"title":"Statistics-tuned entanglement of the boundary modes in coupled Su-Schrieffer-Heeger chains","authors":"Saikat Santra, A. Agarwala, S. Bhattacharjee","doi":"10.1103/PhysRevB.103.195134","DOIUrl":null,"url":null,"abstract":"We show that mutual statistics between quantum particles can be tuned to generate emergent novel few particle quantum mechanics for the boundary modes of symmetry-protected topological phases of matter. As a concrete setting, we study a system of pseudofermions, defined as quantum particles with tunable algebra, which lie on two distinct Su-Schrieffer-Heeger (SSH) chains. We find that as the mutual statistics of the particles are tuned -- the boundary modes present in the two chains gets non-trivially entangled showing a sudden jump in their mutual entanglement entropy. We further show that, such tuning of statistics engenders a first-order transition between two topologically non-trivial phases which differ in the behavior of inter-chain entanglement. Using a combination of analytical and numerical techniques and effective modeling, we uncover the rich physics that this system hosts. The results are of particular relevance in context of the study of the effective low energy quantum mechanics of topological edge modes in one hand and their recent realization in ultracold atoms on the other. This then provides for controlled manipulation of such low energy modes.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.195134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We show that mutual statistics between quantum particles can be tuned to generate emergent novel few particle quantum mechanics for the boundary modes of symmetry-protected topological phases of matter. As a concrete setting, we study a system of pseudofermions, defined as quantum particles with tunable algebra, which lie on two distinct Su-Schrieffer-Heeger (SSH) chains. We find that as the mutual statistics of the particles are tuned -- the boundary modes present in the two chains gets non-trivially entangled showing a sudden jump in their mutual entanglement entropy. We further show that, such tuning of statistics engenders a first-order transition between two topologically non-trivial phases which differ in the behavior of inter-chain entanglement. Using a combination of analytical and numerical techniques and effective modeling, we uncover the rich physics that this system hosts. The results are of particular relevance in context of the study of the effective low energy quantum mechanics of topological edge modes in one hand and their recent realization in ultracold atoms on the other. This then provides for controlled manipulation of such low energy modes.