Seismic response of buildings resting on soil isolated with EPS geofoam buffer

IF 0.5 Q4 ENGINEERING, GEOLOGICAL International Journal of Geotechnical Earthquake Engineering Pub Date : 2022-01-01 DOI:10.4018/ijgee.298987
{"title":"Seismic response of buildings resting on soil isolated with EPS geofoam buffer","authors":"","doi":"10.4018/ijgee.298987","DOIUrl":null,"url":null,"abstract":"The present study deals with analyzing the efficacy of EPS (Epoxy Polystyrene) geofoam buffer as a soil-isolation medium to reduce the seismic energy transferred and, thereby to reduce the dynamic response of buildings under earthquake induced loads. Finite element simulation of the transient response of an integrated soil isolation-building system in which, buildings resting on raft foundation in medium dense sand beds, with and without soil-isolation mechanism has been carried out using a recorded accelerogram of El Centro earthquake. Four sets of three-dimensional buildings (one, two, three and four-storey) of single bay moment resisting concrete frames have been considered for the analysis. The EPS geofoam buffer of various thicknesses was placed at different depths below the raft foundation. The results under field-scale conditions indicate that soil isolation provided by the EPS geofoam buffer substantially reduces the earthquake energy transmission to the superstructure during a strong earthquake.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijgee.298987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study deals with analyzing the efficacy of EPS (Epoxy Polystyrene) geofoam buffer as a soil-isolation medium to reduce the seismic energy transferred and, thereby to reduce the dynamic response of buildings under earthquake induced loads. Finite element simulation of the transient response of an integrated soil isolation-building system in which, buildings resting on raft foundation in medium dense sand beds, with and without soil-isolation mechanism has been carried out using a recorded accelerogram of El Centro earthquake. Four sets of three-dimensional buildings (one, two, three and four-storey) of single bay moment resisting concrete frames have been considered for the analysis. The EPS geofoam buffer of various thicknesses was placed at different depths below the raft foundation. The results under field-scale conditions indicate that soil isolation provided by the EPS geofoam buffer substantially reduces the earthquake energy transmission to the superstructure during a strong earthquake.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPS土工泡沫缓冲隔震地基上建筑物的地震反应
本文分析了环氧聚苯乙烯(EPS)土工泡沫缓冲层作为隔土介质减少地震传递能量,从而降低建筑物在地震荷载作用下的动力响应的效果。利用El Centro地震记录的加速度图,对中密沙层中筏板基础上的建筑物在有和没有隔土机制的情况下,整体土隔土-建筑系统的瞬态响应进行了有限元模拟。考虑了四组三维建筑(一层、二层、三层和四层)的单海湾抗弯矩混凝土框架进行分析。将不同厚度的EPS土工泡沫缓冲层放置在筏板基础下方不同深度处。现场试验结果表明,EPS土工泡沫缓冲层提供的隔土作用大大减少了强震时向上部结构传递的地震能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
11
期刊最新文献
Liquefaction Behavior of Typical River Channel Deposit in Kolkata City Higher-Order Finite Element Vibration Analysis of Circular Raft on Winkler Foundation Behavior of Low Height Embankment Under Earthquake Loading Application of artificial intelligence techniques in slope stability analysis A short review and future prospects Numerical Modeling of Quaternary Sediment Amplification. Basin Size, ASCE Site Class and Fault Location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1