FMM: An R Package for Modeling Rhythmic Patterns in Oscillatory Systems

R J. Pub Date : 2021-05-21 DOI:10.32614/RJ-2022-015
Itziar Fernández, Alejandro Rodríguez-Collado, Yolanda Larriba, Adrián Lamela, Christian Canedo, Cristina Rueda
{"title":"FMM: An R Package for Modeling Rhythmic Patterns in Oscillatory Systems","authors":"Itziar Fernández, Alejandro Rodríguez-Collado, Yolanda Larriba, Adrián Lamela, Christian Canedo, Cristina Rueda","doi":"10.32614/RJ-2022-015","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the R package FMM which implements a novel approach to describe rhythmic patterns in oscillatory signals. The frequency modulated M\\\"obius (FMM) model is defined as a parametric signal plus a gaussian noise, where the signal can be described as a single or a sum of waves. The FMM approach is flexible enough to describe a great variety of rhythmic patterns. The FMM package includes all required functions to fit and explore single and multi-wave FMM models, as well as a restricted version that allows equality constraints between parameters representing a priori knowledge about the shape to be included. Moreover, the FMM package can generate synthetic data and visualize the results of the fitting process. The potential of this methodology is illustrated with examples of such biological oscillations as the circadian rhythm in gene expression, the electrical activity of the heartbeat and neuronal activity.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"60 1","pages":"361-380"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/RJ-2022-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper is dedicated to the R package FMM which implements a novel approach to describe rhythmic patterns in oscillatory signals. The frequency modulated M\"obius (FMM) model is defined as a parametric signal plus a gaussian noise, where the signal can be described as a single or a sum of waves. The FMM approach is flexible enough to describe a great variety of rhythmic patterns. The FMM package includes all required functions to fit and explore single and multi-wave FMM models, as well as a restricted version that allows equality constraints between parameters representing a priori knowledge about the shape to be included. Moreover, the FMM package can generate synthetic data and visualize the results of the fitting process. The potential of this methodology is illustrated with examples of such biological oscillations as the circadian rhythm in gene expression, the electrical activity of the heartbeat and neuronal activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FMM:一个用于振荡系统节奏模式建模的R包
本文介绍了R包FMM,它实现了一种描述振荡信号节奏模式的新方法。调频M\ \ obius (FMM)模型被定义为一个参数信号加上高斯噪声,其中信号可以被描述为单个或多个波。FMM方法足够灵活,可以描述各种各样的节奏模式。FMM包包括拟合和探索单波和多波FMM模型所需的所有功能,以及一个限制版本,允许在表示有关形状的先验知识的参数之间进行相等约束。此外,FMM包可以生成合成数据,并将拟合过程的结果可视化。这种方法的潜力是通过诸如基因表达的昼夜节律、心跳的电活动和神经元活动等生物振荡的例子来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1