D. B. Reeder, D. Honegger, J. Joseph, C. McNeil, Tarry Rago, D. Ralston
{"title":"Acoustic propagation at low-to-mid-frequencies in the Connecticut River","authors":"D. B. Reeder, D. Honegger, J. Joseph, C. McNeil, Tarry Rago, D. Ralston","doi":"10.1121/2.0000811","DOIUrl":null,"url":null,"abstract":"An estuary is a constrained environment which often hosts a salt wedge during flood and a fresh water plume on ebb, the structures of which are complex functions of the tide’s range and speed of advance, river discharge volumetric flow rate and river mouth morphology. A field experiment was carried out in the Connecticut River in June 2017, one goal of which was to investigate the low-to-mid-frequency acoustic propagation characteristics of the riverine salt wedge as well as the plume outside the river mouth. Linear frequency-modulated (LFM) acoustic signals in the 500-2000 Hz band were collected during several tidal cycles. Data analyses demonstrate the degree to which these features in this highly energetic environment impact acoustic propagation; dominant mechanisms are boundary interactions, salt wedge sound speed gradients and bubble clouds at the ebb plume front.An estuary is a constrained environment which often hosts a salt wedge during flood and a fresh water plume on ebb, the structures of which are complex functions of the tide’s range and speed of advance, river discharge volumetric flow rate and river mouth morphology. A field experiment was carried out in the Connecticut River in June 2017, one goal of which was to investigate the low-to-mid-frequency acoustic propagation characteristics of the riverine salt wedge as well as the plume outside the river mouth. Linear frequency-modulated (LFM) acoustic signals in the 500-2000 Hz band were collected during several tidal cycles. Data analyses demonstrate the degree to which these features in this highly energetic environment impact acoustic propagation; dominant mechanisms are boundary interactions, salt wedge sound speed gradients and bubble clouds at the ebb plume front.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An estuary is a constrained environment which often hosts a salt wedge during flood and a fresh water plume on ebb, the structures of which are complex functions of the tide’s range and speed of advance, river discharge volumetric flow rate and river mouth morphology. A field experiment was carried out in the Connecticut River in June 2017, one goal of which was to investigate the low-to-mid-frequency acoustic propagation characteristics of the riverine salt wedge as well as the plume outside the river mouth. Linear frequency-modulated (LFM) acoustic signals in the 500-2000 Hz band were collected during several tidal cycles. Data analyses demonstrate the degree to which these features in this highly energetic environment impact acoustic propagation; dominant mechanisms are boundary interactions, salt wedge sound speed gradients and bubble clouds at the ebb plume front.An estuary is a constrained environment which often hosts a salt wedge during flood and a fresh water plume on ebb, the structures of which are complex functions of the tide’s range and speed of advance, river discharge volumetric flow rate and river mouth morphology. A field experiment was carried out in the Connecticut River in June 2017, one goal of which was to investigate the low-to-mid-frequency acoustic propagation characteristics of the riverine salt wedge as well as the plume outside the river mouth. Linear frequency-modulated (LFM) acoustic signals in the 500-2000 Hz band were collected during several tidal cycles. Data analyses demonstrate the degree to which these features in this highly energetic environment impact acoustic propagation; dominant mechanisms are boundary interactions, salt wedge sound speed gradients and bubble clouds at the ebb plume front.