Compact correlation coding for visual object categorization

Nobuyuki Morioka, S. Satoh
{"title":"Compact correlation coding for visual object categorization","authors":"Nobuyuki Morioka, S. Satoh","doi":"10.1109/ICCV.2011.6126425","DOIUrl":null,"url":null,"abstract":"Spatial relationships between local features are thought to play a vital role in representing object categories. However, learning a compact set of higher-order spatial features based on visual words, e.g., doublets and triplets, remains a challenging problem as possible combinations of visual words grow exponentially. While the local pairwise codebook achieves a compact codebook of pairs of spatially close local features without feature selection, its formulation is not scale invariant and is only suitable for densely sampled local features. In contrast, the proximity distribution kernel is a scale-invariant and robust representation capturing rich spatial proximity information between local features, but its representation grows quadratically in the number of visual words. Inspired by the two abovementioned techniques, this paper presents the compact correlation coding that combines the strengths of the two. Our method achieves a compact representation that is scaleinvariant and robust against object deformation. In addition, we adopt sparse coding instead of k-means clustering during the codebook construction to increase the discriminative power of our method. We systematically evaluate our method against both the local pairwise codebook and proximity distribution kernel on several challenging object categorization datasets to show performance improvements.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"146 1","pages":"1639-1646"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Spatial relationships between local features are thought to play a vital role in representing object categories. However, learning a compact set of higher-order spatial features based on visual words, e.g., doublets and triplets, remains a challenging problem as possible combinations of visual words grow exponentially. While the local pairwise codebook achieves a compact codebook of pairs of spatially close local features without feature selection, its formulation is not scale invariant and is only suitable for densely sampled local features. In contrast, the proximity distribution kernel is a scale-invariant and robust representation capturing rich spatial proximity information between local features, but its representation grows quadratically in the number of visual words. Inspired by the two abovementioned techniques, this paper presents the compact correlation coding that combines the strengths of the two. Our method achieves a compact representation that is scaleinvariant and robust against object deformation. In addition, we adopt sparse coding instead of k-means clustering during the codebook construction to increase the discriminative power of our method. We systematically evaluate our method against both the local pairwise codebook and proximity distribution kernel on several challenging object categorization datasets to show performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于视觉对象分类的紧凑相关编码
局部特征之间的空间关系被认为在表示对象类别方面起着至关重要的作用。然而,随着视觉词的可能组合呈指数级增长,学习基于视觉词的紧凑的高阶空间特征集仍然是一个具有挑战性的问题,例如,双联体和三联体。而局部两两码本在不进行特征选择的情况下实现了空间上紧密的局部特征对的紧凑码本,但其表述不是尺度不变的,只适用于密集采样的局部特征。邻近分布核是一种尺度不变的鲁棒表示,可捕获局部特征之间丰富的空间邻近信息,但其表示在视觉词数上呈二次增长。受上述两种技术的启发,本文提出了结合两者优点的紧凑相关编码。我们的方法实现了一种紧凑的表示,它是尺度不变的,并且对物体变形具有鲁棒性。此外,在码本构建过程中,我们采用稀疏编码代替k-means聚类来提高我们方法的判别能力。我们在几个具有挑战性的目标分类数据集上系统地评估了我们的方法对局部成对码本和邻近分布核的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1