Irony detection on microposts with limited set of features

Hande Taslioglu, P. Senkul
{"title":"Irony detection on microposts with limited set of features","authors":"Hande Taslioglu, P. Senkul","doi":"10.1145/3019612.3019818","DOIUrl":null,"url":null,"abstract":"Detecting irony in texts attracts computer scientists' attention as a recent research problem. Automatic detection of irony on microblog texts, i.e., microposts, poses additional challenges. Microposts have limited number of characters, and generally include typing errors, therefore traditional methods of text mining cannot be applied easily. This study aims to automatically detect irony in microposts. The proposed solution is based on supervised learning through a limited set of features extracted from the text. Experimental results show the effectiveness of the approach for Turkish and English informal texts.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Detecting irony in texts attracts computer scientists' attention as a recent research problem. Automatic detection of irony on microblog texts, i.e., microposts, poses additional challenges. Microposts have limited number of characters, and generally include typing errors, therefore traditional methods of text mining cannot be applied easily. This study aims to automatically detect irony in microposts. The proposed solution is based on supervised learning through a limited set of features extracted from the text. Experimental results show the effectiveness of the approach for Turkish and English informal texts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限特征微博的反讽检测
文本反讽的检测作为一个新的研究课题引起了计算机科学家的关注。自动检测微博文本(即微博)上的反讽也带来了额外的挑战。微博的字符数量有限,并且通常包含输入错误,因此传统的文本挖掘方法不容易应用。本研究旨在自动检测微博中的反讽。提出的解决方案是基于监督学习,通过从文本中提取的有限特征集。实验结果表明了该方法对土耳其语和英语非正式文本的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tarski Handling bitcoin conflicts through a glimpse of structure Multi-CNN and decision tree based driving behavior evaluation Session details: WT - web technologies track Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1