Numerical Calibration of Three-Dimensional Printed Five-Hole Probes for the Transonic Flow Regime

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2021-05-01 DOI:10.1115/1.4049680
Maximilian Passmann, S. Wiesche, F. Joos
{"title":"Numerical Calibration of Three-Dimensional Printed Five-Hole Probes for the Transonic Flow Regime","authors":"Maximilian Passmann, S. Wiesche, F. Joos","doi":"10.1115/1.4049680","DOIUrl":null,"url":null,"abstract":"\n This paper presents a method for a cost- and time-effective calibration procedure for five-hole probes for the transonic flow regime based on additive manufacturing and a numerical calibration routine. The computational setup and calibration routine are described in detail. The calibration procedure is tested on a custom-built L-shaped conical probe of 30 deg half-angle with a flat tip and an outer diameter of 2.4 mm. The probe tip is manufactured in stainless steel using direct metal laser sintering. Numerical calibration is carried out over a Mach number range of 0.2–1.4 and pitch and yaw angles of ±45 deg. The numerical calibration charts are validated with wind tunnel tests across the entire Mach number range and the expected accuracy of the numerical calibration method is quantified. Exemplary results of area traverses up- and downstream of a linear transonic turbine cascade with tip clearance are presented and discussed briefly.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4049680","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method for a cost- and time-effective calibration procedure for five-hole probes for the transonic flow regime based on additive manufacturing and a numerical calibration routine. The computational setup and calibration routine are described in detail. The calibration procedure is tested on a custom-built L-shaped conical probe of 30 deg half-angle with a flat tip and an outer diameter of 2.4 mm. The probe tip is manufactured in stainless steel using direct metal laser sintering. Numerical calibration is carried out over a Mach number range of 0.2–1.4 and pitch and yaw angles of ±45 deg. The numerical calibration charts are validated with wind tunnel tests across the entire Mach number range and the expected accuracy of the numerical calibration method is quantified. Exemplary results of area traverses up- and downstream of a linear transonic turbine cascade with tip clearance are presented and discussed briefly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维印刷五孔探头跨声速流态的数值标定
本文提出了一种基于增材制造和数值校准程序的跨声速流态五孔探头的成本和时间有效的校准方法。详细描述了计算设置和校准程序。校准程序在定制的l形锥形探头上进行测试,探头为30度半角,尖端平整,外径为2.4 mm。探针尖端是用不锈钢制造的,使用直接金属激光烧结。数值校准在马赫数0.2-1.4范围内进行,俯仰角和偏航角为±45度。通过整个马赫数范围内的风洞试验验证了数值校准图,并对数值校准方法的预期精度进行了量化。给出了带叶尖间隙的线性跨声速涡轮叶栅上下面积横贯的示例结果,并进行了简要讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
期刊最新文献
Energy Contribution Study Of Blade Cavitation Control By Obstacles In A Waterjet Pump Based On mPOD And EEMD A Method to Determine Bubble Distribution in Liquid Using Data of Inverse Acoustical Scattering Effect of Perforation on Vortex Characteristics of a Micro-Vortex Generator Mounted on a Flat Plate Numerical Studies On the Oil Film Thickness in the Case of Stratified Flow with Different Oil-Water Flow Combinations Through Sudden Contraction Tube Orifice Jet Curvature And Its Interaction With A Row Of Short Pin-Fins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1