{"title":"Full 6-DOF Admittance Control for the Industrial Robot Stäubli TX60","authors":"Sven Tittel, M. Malekzadeh, Jochen J. Steil","doi":"10.1109/COASE.2019.8843128","DOIUrl":null,"url":null,"abstract":"Human robot interaction (HRI) is a major research field in robotics with significant progress over the last decades. While most HRI is focused on novel light weight robots, we here present an admittance control implementation for the 6-DOF industrial robot Stäubli TX60. We use only standard and commercially available interfaces, without adding external force sensing, and present a method to estimate joint friction to improve the robot model. In contrast to most previous works, all six joints are controlled simultaneously to realize a handguided motion of the whole robot. To this aim, we present a modular control framework that allows for seamlessly switching between simulated and real hardware.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"102 1","pages":"1450-1455"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Human robot interaction (HRI) is a major research field in robotics with significant progress over the last decades. While most HRI is focused on novel light weight robots, we here present an admittance control implementation for the 6-DOF industrial robot Stäubli TX60. We use only standard and commercially available interfaces, without adding external force sensing, and present a method to estimate joint friction to improve the robot model. In contrast to most previous works, all six joints are controlled simultaneously to realize a handguided motion of the whole robot. To this aim, we present a modular control framework that allows for seamlessly switching between simulated and real hardware.