Performance of Aquatic Plant Species for Phytoremediation of Heavy Metals Contaminated Water

Priya Pillai
{"title":"Performance of Aquatic Plant Species for Phytoremediation of Heavy Metals Contaminated Water","authors":"Priya Pillai","doi":"10.12723/MJS.55.1","DOIUrl":null,"url":null,"abstract":"Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water.  Use of aquatic plants to extract, sequester and/or detoxify pollutants and is a new and powerful technique for environmental clean up. Plants are ideal agents for soil and water remediation because of their unique genetic, biochemical and physiological properties.  The aim of this work is to evaluate the potential of free floating duck weed Spirodela polyrhiza to remove heavy metals from waste water and the biochemical effect of heavy metals on Spirodela polyrhiza. Approximately 93% of total heavy metal induced – toxicity appears resulting in the reduced activities of nitrate reductase, total chlorophyll and protein content of the plant. The results recommended the use of Spirodela polyrhiza to ameliorate the wastewater contaminated with heavy metals.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"377 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/MJS.55.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water.  Use of aquatic plants to extract, sequester and/or detoxify pollutants and is a new and powerful technique for environmental clean up. Plants are ideal agents for soil and water remediation because of their unique genetic, biochemical and physiological properties.  The aim of this work is to evaluate the potential of free floating duck weed Spirodela polyrhiza to remove heavy metals from waste water and the biochemical effect of heavy metals on Spirodela polyrhiza. Approximately 93% of total heavy metal induced – toxicity appears resulting in the reduced activities of nitrate reductase, total chlorophyll and protein content of the plant. The results recommended the use of Spirodela polyrhiza to ameliorate the wastewater contaminated with heavy metals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水生植物修复重金属污染水体的性能研究
重金属和有机污染物是影响土壤、水和空气质量的普遍存在的环境污染物。在过去的50年里,已经制定了许多策略来修复受污染的水。利用水生植物提取、隔离和/或解毒污染物,是一种新的、强有力的环境净化技术。植物具有独特的遗传、生化和生理特性,是土壤和水体修复的理想介质。本研究旨在探讨鸭浮草多螺旋藻去除废水中重金属的潜力,以及重金属对多螺旋藻的生化影响。约93%的重金属诱导毒性表现为硝酸盐还原酶活性降低、总叶绿素和蛋白质含量降低。结果表明,利用多螺旋藻对重金属污染废水进行治理是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On D-distance and D-closed Graphs Distance Pattern Distinguishing Coloring of Graphs Possible Alternate Scenario for short Duration GRBs invoking Dark Matter Objects Comparative analysis of larvicidal efficacy of Silver and Copper nanoparticles synthesized leaf extract of Ocimum basilicum against Epilachna vigintioctopunctata Stability analysis of visco-elastically damped structure through Bagley Torvik Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1