{"title":"Comparison the Performance of the Dynamic Voltage Restorer Based on PI, Fuzzy Logic, and Fuzzy Neural Controller","authors":"S. S. Shukir","doi":"10.11648/J.IJEM.20210501.11","DOIUrl":null,"url":null,"abstract":"The Dynamic Voltage Restorer (DVR) is one of the most efficient and effective custom power devices in protecting the sensitive equipment against voltage sag and voltage harmonics due to; lower cost, smaller size and dynamic response. The inverter is the core of the DVR and it directly affects the performance of the DVR, incorrect injection or delay in the process would be dangerous to sensitive loads. The major functions of the DVR controller are, detection of voltage disturbances events in the system, calculation of the compensating voltage and generation the reference signal for the PWM to trigger the voltage source inverter. PI controller and fuzzy logic controller has been compared with the proposed fuzzy neural optimized fuzzy logic controller in correcting the sag problems and mitigating the harmonics distortion with linear and non-linear loads. Fuzzy Neural optimized Fuzzy Logic controller is the most efficient in improving the performance of the Dynamic Voltage Restorer in compensating any kind of voltage variations and reducing the voltage Total Harmonic Distortion (THD) by enhancing an injection capability of the DVR which is highly influenced by a control algorithm employed. The system is simulated in MATLAB and results confirm the validity and feasibility.","PeriodicalId":45882,"journal":{"name":"International Journal of Engineering Business Management","volume":"120 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Business Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJEM.20210501.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 3
Abstract
The Dynamic Voltage Restorer (DVR) is one of the most efficient and effective custom power devices in protecting the sensitive equipment against voltage sag and voltage harmonics due to; lower cost, smaller size and dynamic response. The inverter is the core of the DVR and it directly affects the performance of the DVR, incorrect injection or delay in the process would be dangerous to sensitive loads. The major functions of the DVR controller are, detection of voltage disturbances events in the system, calculation of the compensating voltage and generation the reference signal for the PWM to trigger the voltage source inverter. PI controller and fuzzy logic controller has been compared with the proposed fuzzy neural optimized fuzzy logic controller in correcting the sag problems and mitigating the harmonics distortion with linear and non-linear loads. Fuzzy Neural optimized Fuzzy Logic controller is the most efficient in improving the performance of the Dynamic Voltage Restorer in compensating any kind of voltage variations and reducing the voltage Total Harmonic Distortion (THD) by enhancing an injection capability of the DVR which is highly influenced by a control algorithm employed. The system is simulated in MATLAB and results confirm the validity and feasibility.
期刊介绍:
The International Journal of Engineering Business Management (IJEBM) is an international, peer-reviewed, open access scientific journal that aims to promote an integrated and multidisciplinary approach to engineering, business and management. The journal focuses on issues related to the design, development and implementation of new methodologies and technologies that contribute to strategic and operational improvements of organizations within the contemporary global business environment. IJEBM encourages a systematic and holistic view in order to ensure an integrated and economically, socially and environmentally friendly approach to management of new technologies in business. It aims to be a world-class research platform for academics, managers, and professionals to publish scholarly research in the global arena. All submitted articles considered suitable for the International Journal of Engineering Business Management are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Topics of interest include, but are not limited to: -Competitive product design and innovation -Operations and manufacturing strategy -Knowledge management and knowledge innovation -Information and decision support systems -Radio Frequency Identification -Wireless Sensor Networks -Industrial engineering for business improvement -Logistics engineering and transportation -Modeling and simulation of industrial and business systems -Quality management and Six Sigma -Automation of industrial processes and systems -Manufacturing performance and productivity measurement -Supply Chain Management and the virtual enterprise network -Environmental, legal and social aspects -Technology Capital and Financial Modelling -Engineering Economics and Investment Theory -Behavioural, Social and Political factors in Engineering