S. Alemzadeh, F. Kromp, B. Preim, S. Taschner-Mandl, K. Bühler
{"title":"A Visual Analytics Approach for Patient Stratification and Biomarker Discovery","authors":"S. Alemzadeh, F. Kromp, B. Preim, S. Taschner-Mandl, K. Bühler","doi":"10.2312/vcbm.20191235","DOIUrl":null,"url":null,"abstract":"We introduce discoVA as a visual analytics tool for the refinement of risk stratification of cancer patients and biomarker discovery. Currently, tools for the joint analysis of multiple biological and clinical information in this field are insufficient or lacking. Our tool fills this gap by enabling bio-medical experts to explore datasets of cancer patient cohorts. By using multiple coordinated visualization techniques, nested visual queries on various data types can be performed to generate/prove a hypothesis by identifying discrete sub-cohorts. We demonstrated the utility of discoVA by a case study involving bio-medical researchers.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"377 1","pages":"91-95"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20191235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce discoVA as a visual analytics tool for the refinement of risk stratification of cancer patients and biomarker discovery. Currently, tools for the joint analysis of multiple biological and clinical information in this field are insufficient or lacking. Our tool fills this gap by enabling bio-medical experts to explore datasets of cancer patient cohorts. By using multiple coordinated visualization techniques, nested visual queries on various data types can be performed to generate/prove a hypothesis by identifying discrete sub-cohorts. We demonstrated the utility of discoVA by a case study involving bio-medical researchers.