Language classification using n-grams accelerated by FPGA-based Bloom filters

A. Jacob, M. Gokhale
{"title":"Language classification using n-grams accelerated by FPGA-based Bloom filters","authors":"A. Jacob, M. Gokhale","doi":"10.1145/1328554.1328564","DOIUrl":null,"url":null,"abstract":"N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"26 1","pages":"31-37"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1145/1328554.1328564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga的Bloom滤波器加速的n-gram语言分类
N-Gram(文本文档中的n个字符序列)计数是一种成熟的技术,用于对文档中的文本语言进行分类。在本文中,通过在XtremeData XD1000系统上使用可重构硬件来加速n-gram处理。我们的设计在多个级别上采用并行性,并行布隆过滤器访问片上RAM,并行语言分类器和并行文档处理。与使用片外SRAM进行查找的另一种硬件实现(HAIL算法)相比,我们的高度可扩展实现仅使用片内内存块。我们的端到端语言分类实现运行在85倍的可比软件和1.45倍的竞争硬件设计上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1121
期刊最新文献
The AHP-TOPSIS based DSS for selecting suppliers of information resources A mutual one-time password for online application Impact of Artificial Intelligence in COVID-19 Pandemic: A Comprehensive Review Structure and criteria defining business value in agile software development based on hierarchical analysis A Hybrid Collaborative Filtering Technique for Web Service Recommendation using Contextual Attributes of Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1