{"title":"Outdoor Particle Filter Localization with Sparse Observation","authors":"Nils Einecke, A. Robert","doi":"10.1109/ICAR46387.2019.8981650","DOIUrl":null,"url":null,"abstract":"Nowadays, autonomous lawn mowers are widely used in Europe. The robust autonomous operation and the ease of installation has lead to a substantial market share. Most autonomous lawn mowers move in a random fashion or with simple patterns because their self-localization capabilities are very limited. In this work, we analyze the potential of using apriori information about the shape of the boundary wire in combination with electromagnetic wire sensor readings for a particle-filter-based localization. In our experiments, this approach enables us to completely compensate for odometry drift. We achieve an accuracy of 20cm to 30cm in position and 3° in orientation for common garden sizes.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"11 1","pages":"590-597"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, autonomous lawn mowers are widely used in Europe. The robust autonomous operation and the ease of installation has lead to a substantial market share. Most autonomous lawn mowers move in a random fashion or with simple patterns because their self-localization capabilities are very limited. In this work, we analyze the potential of using apriori information about the shape of the boundary wire in combination with electromagnetic wire sensor readings for a particle-filter-based localization. In our experiments, this approach enables us to completely compensate for odometry drift. We achieve an accuracy of 20cm to 30cm in position and 3° in orientation for common garden sizes.