Production of Biodiesel Using Phosphate Rock as a Heterogeneous Catalyst. An Optimized Process Using Surface Response Methodology

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Environmental and Climate Technologies Pub Date : 2022-01-01 DOI:10.2478/rtuect-2022-0062
Janet Kiprono, H. Rutto, T. Seodigeng
{"title":"Production of Biodiesel Using Phosphate Rock as a Heterogeneous Catalyst. An Optimized Process Using Surface Response Methodology","authors":"Janet Kiprono, H. Rutto, T. Seodigeng","doi":"10.2478/rtuect-2022-0062","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, calcined phosphate rock was used as a heterogeneous catalyst for biodiesel production from waste cooking oil (WCO). Response surface methodology was used to optimize and determine the significant process variables that affected the experiment. A 5-level-4 factor Central composite design consisting of 30 experiments was used to develop a quadratic polynomial model. The following parameters were optimized, namely, reaction temperature (40–90 °C), catalyst to oil weight ratio (1–5 %), reaction time (40–120 min), and methanol to oil ratio (10:1–18:1). Maximum biodiesel yield of 96.07 % was obtained through numerical optimization at reaction temperature 62.63 °C, catalyst to oil weight ratio of 3.32 %, reaction time 79.07 min, and alcohol to oil ratio 14.79:1. Fourier transform Infrared Spectra (FTIR) analysis was used to characterize the phosphate rock in its raw form, after calcination at 1000 °C and after the first and the fourth reuse cycle. According to the American society for testing and material (ASTM D6751), the fuel properties such as kinematic viscosity, pour point, cloud point, and density were measured and were found to be within the stipulated range.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the present study, calcined phosphate rock was used as a heterogeneous catalyst for biodiesel production from waste cooking oil (WCO). Response surface methodology was used to optimize and determine the significant process variables that affected the experiment. A 5-level-4 factor Central composite design consisting of 30 experiments was used to develop a quadratic polynomial model. The following parameters were optimized, namely, reaction temperature (40–90 °C), catalyst to oil weight ratio (1–5 %), reaction time (40–120 min), and methanol to oil ratio (10:1–18:1). Maximum biodiesel yield of 96.07 % was obtained through numerical optimization at reaction temperature 62.63 °C, catalyst to oil weight ratio of 3.32 %, reaction time 79.07 min, and alcohol to oil ratio 14.79:1. Fourier transform Infrared Spectra (FTIR) analysis was used to characterize the phosphate rock in its raw form, after calcination at 1000 °C and after the first and the fourth reuse cycle. According to the American society for testing and material (ASTM D6751), the fuel properties such as kinematic viscosity, pour point, cloud point, and density were measured and were found to be within the stipulated range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以磷矿石为多相催化剂生产生物柴油。利用表面响应法优化工艺
摘要以煅烧磷矿为多相催化剂,研究了以废食用油为原料制备生物柴油的工艺。采用响应面法优化确定影响试验的重要工艺变量。采用5-level-4 - factor Central composite design(30个试验)建立二次多项式模型。优化了反应温度(40 ~ 90℃)、催化剂与油质量比(1 ~ 5%)、反应时间(40 ~ 120 min)、甲醇与油比(10:1 ~ 18:1)。通过数值优化,在反应温度62.63℃、催化剂与油质量比3.32%、反应时间79.07 min、醇油比14.79:1的条件下,生物柴油的产率最高可达96.07%。傅里叶变换红外光谱(FTIR)分析用于表征磷矿的原始形态,在1000°C下煅烧后,在第一次和第四次重复使用循环后。根据美国材料试验学会(ASTM D6751),对燃料的运动粘度、倾点、浊点、密度等性能进行了测量,均在规定范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
期刊最新文献
The Influence of Young People on Household Decisions on Energy Efficiency in Latvia Optimization Study of Carbon Emissions in Wind Power Integrated Systems Based on Optimal Dispatch Algorithm Development of New Bio-Based Building Materials by Utilising Manufacturing Waste Case Study of EPS Aggregate Insulation Material Used in Construction Sites Research of Insertion Loss of Multilayered Construction with Devulcanized Waste Rubber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1