Hong-bo Pan , Meng-jiao Zhang , Wei-ming Liu , Jun Yan , Hui-ting Wang , Chang-sheng Xie , Zhan Guo
{"title":"Effects of micro-alloying and production process on precipitation behaviors and mechanical properties of HRB600","authors":"Hong-bo Pan , Meng-jiao Zhang , Wei-ming Liu , Jun Yan , Hui-ting Wang , Chang-sheng Xie , Zhan Guo","doi":"10.1016/S1006-706X(17)30081-X","DOIUrl":null,"url":null,"abstract":"<div><p>Effects of micro-alloying elements and production process on microstructure, mechanical properties and precipitates of 600 MPa grade rebars were studied by using pilot test, metallographic observation, tensile test, thermodynamic calculation and transmission electron microscopy. The results show that the tested steels are composed of ferrite and pearlite, in which the content range of pearlite is 33%–45%. For vanadium micro-alloyed steel, interphase precipitation strengthening effect of V can be promoted and the yield strength of tested steels can be increased with increasing V content and decreasing finishing rolling temperature. The temperature of terminated cooling should be more than 700 °C when the water cooling is used. When niobium is added to the steel, more coarse (Nb, V) C, N precipitates are generated at high temperature, so that the solid solubility of precipitated phases of vanadium is reduced and the precipitation strengthening effect of vanadium is weakened.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30081-X","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X1730081X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 7
Abstract
Effects of micro-alloying elements and production process on microstructure, mechanical properties and precipitates of 600 MPa grade rebars were studied by using pilot test, metallographic observation, tensile test, thermodynamic calculation and transmission electron microscopy. The results show that the tested steels are composed of ferrite and pearlite, in which the content range of pearlite is 33%–45%. For vanadium micro-alloyed steel, interphase precipitation strengthening effect of V can be promoted and the yield strength of tested steels can be increased with increasing V content and decreasing finishing rolling temperature. The temperature of terminated cooling should be more than 700 °C when the water cooling is used. When niobium is added to the steel, more coarse (Nb, V) C, N precipitates are generated at high temperature, so that the solid solubility of precipitated phases of vanadium is reduced and the precipitation strengthening effect of vanadium is weakened.