{"title":"Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators","authors":"J. Kerdkaew, R. Wangkeeree, R. Wangkeeree","doi":"10.3934/naco.2021053","DOIUrl":null,"url":null,"abstract":"In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [1,2] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"113 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [1,2] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.