D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte
{"title":"Hypergraph Ramsey numbers of cliques versus stars","authors":"D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte","doi":"10.1002/rsa.21155","DOIUrl":null,"url":null,"abstract":"Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \\left(\\genfrac{}{}{0ex}{}{n}{2}\\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\\left({K}_4^{(3)},{S}_n^{(3)}\\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\\log^2n}\\le r\\left({K}_4^{(3)},{S}_n^{(3)}\\right)\\le {2}^{c^{\\prime }{n}^{2/3}\\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \left(\genfrac{}{}{0ex}{}{n}{2}\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\left({K}_4^{(3)},{S}_n^{(3)}\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\log^2n}\le r\left({K}_4^{(3)},{S}_n^{(3)}\right)\le {2}^{c^{\prime }{n}^{2/3}\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.