Identifying Web Queries with Question Intent

Gilad Tsur, Yuval Pinter, Idan Szpektor, David Carmel
{"title":"Identifying Web Queries with Question Intent","authors":"Gilad Tsur, Yuval Pinter, Idan Szpektor, David Carmel","doi":"10.1145/2872427.2883058","DOIUrl":null,"url":null,"abstract":"Vertical selection is the task of predicting relevant verticals for a Web query so as to enrich the Web search results with complementary vertical results. We investigate a novel variant of this task, where the goal is to detect queries with a question intent. Specifically, we address queries for which the user would like an answer with a human touch. We call these CQA-intent queries, since answers to them are typically found in community question answering (CQA) sites. A typical approach in vertical selection is using a vertical's specific language model of relevant queries and computing the query-likelihood for each vertical as a selective criterion. This works quite well for many domains like Shopping, Local and Travel. Yet, we claim that queries with CQA intent are harder to distinguish by modeling content alone, since they cover many different topics. We propose to also take the structure of queries into consideration, reasoning that queries with question intent have quite a different structure than other queries. We present a supervised classification scheme, random forest over word-clusters for variable length texts, which can model the query structure. Our experiments show that it substantially improves classification performance in the CQA-intent selection task compared to content-oriented based classification, especially as query length grows.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Vertical selection is the task of predicting relevant verticals for a Web query so as to enrich the Web search results with complementary vertical results. We investigate a novel variant of this task, where the goal is to detect queries with a question intent. Specifically, we address queries for which the user would like an answer with a human touch. We call these CQA-intent queries, since answers to them are typically found in community question answering (CQA) sites. A typical approach in vertical selection is using a vertical's specific language model of relevant queries and computing the query-likelihood for each vertical as a selective criterion. This works quite well for many domains like Shopping, Local and Travel. Yet, we claim that queries with CQA intent are harder to distinguish by modeling content alone, since they cover many different topics. We propose to also take the structure of queries into consideration, reasoning that queries with question intent have quite a different structure than other queries. We present a supervised classification scheme, random forest over word-clusters for variable length texts, which can model the query structure. Our experiments show that it substantially improves classification performance in the CQA-intent selection task compared to content-oriented based classification, especially as query length grows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别带有问题意图的Web查询
垂直选择的任务是预测Web查询的相关垂直方向,以便用互补的垂直方向结果丰富Web搜索结果。我们研究了该任务的一个新变体,其目标是检测带有问题意图的查询。具体来说,我们处理用户想要一个人性化的回答的查询。我们称这些为CQA意图查询,因为它们的答案通常可以在社区问答(CQA)站点中找到。垂直选择的典型方法是使用垂直的特定语言模型进行相关查询,并计算每个垂直的查询可能性作为选择标准。这在很多领域都很有效,比如购物、本地和旅游。然而,我们声称,具有CQA意图的查询很难通过单独建模内容来区分,因为它们涵盖了许多不同的主题。我们还建议考虑查询的结构,因为具有问题意图的查询与其他查询具有完全不同的结构。我们提出了一种监督分类方案,即对变长度文本进行词簇上的随机森林,它可以对查询结构进行建模。我们的实验表明,与基于内容的分类相比,它大大提高了cqa -意图选择任务的分类性能,特别是当查询长度增加时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MapWatch: Detecting and Monitoring International Border Personalization on Online Maps Automatic Discovery of Attribute Synonyms Using Query Logs and Table Corpora Learning Global Term Weights for Content-based Recommender Systems From Freebase to Wikidata: The Great Migration GoCAD: GPU-Assisted Online Content-Adaptive Display Power Saving for Mobile Devices in Internet Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1