{"title":"The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics","authors":"N. Tkachuk, L. Zelena","doi":"10.3390/cmd2040028","DOIUrl":null,"url":null,"abstract":"This paper tackles bacteria of the genus Bacillus as both biodamaging/biodegrading and biocontrolling agents. The article addresses the said bacteria’s ability to form biofilms and corrosive, antimicrobial and antibiofilm proactive compounds, primarily, siderophores. Their role depends on the species, microorganism strain, production of antimicrobial substances, biofilm formation, and the type of damaged material. The bacteria under analysis have demonstrated the ability to cause as well as inhibit biodamage. The involvement of bacteria of the genus Bacillus in microbiologically influenced corrosion processes is determined by the production of corrosive metabolites and the impact of certain bioelectrochemical mechanisms. Lipopeptides generated by Bacillus subtilis (surfactin, iturin and fengycin) are capable of modifying surfaces’ hydrophobic properties and impacting the microbes’ adhesion to surfaces. Produced by Bacillus velezensis, the siderophore bacillibactin at a high concentration is capable of inhibiting the formation of bacterial biofilms, thus slowing down the degradation of materials. Further study of siderophores as green inhibitors of microbiologically influenced corrosion may be promising as the said compounds possess antibiofilm-forming properties and high-intensity inhibitory capabilities.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd2040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper tackles bacteria of the genus Bacillus as both biodamaging/biodegrading and biocontrolling agents. The article addresses the said bacteria’s ability to form biofilms and corrosive, antimicrobial and antibiofilm proactive compounds, primarily, siderophores. Their role depends on the species, microorganism strain, production of antimicrobial substances, biofilm formation, and the type of damaged material. The bacteria under analysis have demonstrated the ability to cause as well as inhibit biodamage. The involvement of bacteria of the genus Bacillus in microbiologically influenced corrosion processes is determined by the production of corrosive metabolites and the impact of certain bioelectrochemical mechanisms. Lipopeptides generated by Bacillus subtilis (surfactin, iturin and fengycin) are capable of modifying surfaces’ hydrophobic properties and impacting the microbes’ adhesion to surfaces. Produced by Bacillus velezensis, the siderophore bacillibactin at a high concentration is capable of inhibiting the formation of bacterial biofilms, thus slowing down the degradation of materials. Further study of siderophores as green inhibitors of microbiologically influenced corrosion may be promising as the said compounds possess antibiofilm-forming properties and high-intensity inhibitory capabilities.