{"title":"CDDO-Me alleviates oxidative stress in human mesenchymal stem cells","authors":"Hye Jin Cho, Tae Min Kim","doi":"10.12750/jarb.36.4.285","DOIUrl":null,"url":null,"abstract":"Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.","PeriodicalId":33755,"journal":{"name":"Journal of Animal Reproduction and Biotechnology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Reproduction and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12750/jarb.36.4.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.